FOOD AND FEEDING OF YOUNG STRIPED BASS IN ROANOKE RIVER AND WESTERN ALBEMARLE SOUND, NORTH CAROLINA, 1984-1985

Completion Report for Project AFS-24

For

North Carolina Department of Natural Resources and Community Development Division of Marine Fisheries Morehead City, NC 28557

Ву

Roger A. Rulifson, Donald W. Stanley, and John E. Cooper
Institute for Coastal and Marine Resources
East Carolina University
Greenville, NC 27858

(ICMR TECHNICAL REPORT 86-02)

Submitted May 1986

This project was funded, in part, by the U.S. Department of the Interior, Fish and Wildlife Service, under the Anadromous Fish Conservation Act (PL89-304).

SH167 .S68R84 1986

ABSTRACT

Objectives of the 1984 and 1985 studies were to determine densities of striped bass life stages, zooplankton, and phytoplankton in the lower Roanoke River and western Albemarle Sound, North Carolina; the location at which feeding by larvae was initiated; and the prey items selected by young striped bass. Sampling was conducted from 18 May to 18 June in 1984, and from 26 April to 10 River flow varied considerably during the 1984 study and generally was much higher than normal; in 1985 flow was less variable and lower River flow was correlated with the distribution and abundance of phytoplankton, zooplankton, and several striped bass life stages in 1984; flow varied so little in 1985 that no correlations were observed. Chlorophyll a concentrations were mostly between 4-7 ug/l in 1984 with no clear spatial or temporal patterns in the data; 1985 levels were higher (5-15 ug/l) with lowest values upriver, highest values downriver, and intermediate values in western Albemarle Sound. The phytoplankton community resembled that of a lake more closely than that of an estuarine environment in both years. Only about 15% of the 150 cell types identified appeared in more than 10% of the samples. Phytoplankton cell densities (mostly 300-700 cells/ml) and biomass (300-800 ug wet weight/1) were lower in 1984 than in 1985 (8000-10,000 cells/ml; 500-2000 ug wet-weight/1). Spatial and temporal distributions of cell densities and biomass in 1985 were similar to those for chlorophyll a. Green algae were numerically dominant in 1984 but were secondary to diatoms in 1985. Blue-green algae were not present in significant quantities in either year. In both years most algae collected were small species that are potentially usable as food for grazing zooplankton. Concentrations of zooplankton were lower in 1984 and higher in 1985, probably due to changes in the flow regime between the two years. Maximum : concentrations (about 21,000/m³ in 1985) were at least one order of magnitude lower than comparable zooplankton communities in northern estuaries supporting striped bass populations. Zooplankton were primarily freshwater species dominated numerically by cladocerans in 1984 and by copepods in 1985. Comparison of zooplankton and phytoplankton biomasses suggests that zooplankton production was not limited by phytoplankton concentrations in either year. In

LIBRARY NOAA/CCEH 1990 HOBSON AVE, CHAS. SC 29408-2623

TABLE OF CONTENTS

Page
ABSTRACT
LIST OF TABLES
LIST OF FIGURES
INTRODUCTION
STUDY SITE DESCRIPTION
METHODS
Sample Collections
Sample Processing
Data Analyses
RESULTS
Water Quality - River, Delta, and Western Sound
Flow
Temperature
Dissolved Oxygen and pH
Nitrogen and Phosphorus Fractions
Heavy Metals
Summer Water Quality - Albemarle Sound
Ichthyoplankton
Species Composition
Distribution of Striped Bass Eggs
Distribution of Stage 1 Larvae
Distribution of Stage 2 Larvae
Movement, Growth, and Development
Larval Feeding
Parasitism of Larvae
Zooplankton
Cladocera
Copepoda

LIST OF TABLES

		Page
1.	Water depth (m) of sampling locations in the lower Roanoke River (Stations 1-4), delta (Stations 5-12) and western Albemarle Sound (Stations 13-18), North Carolina	
2.	Variables used in Pearson product-moment correlation analyses for abundance of striped bass eggs and larvae, zooplankton, and phytoplankton in lower Roanoke River and western Albemarle Sound, North Carolina	
3.	Water quality information for lower Roanoke River, delta, and western Albemarle Sound, North Carolina, for the period 26 April - 10 June 1985	
4.	Distribution and abundance (number/100 $\rm m^3$) of striped bass eggs in Roanoke River and western Albemarle Sound, North Carolina, in 1984 .	
5.	Results of Pearson product-moment correlation analyses for the average densities of several striped bass life stages and zooplankton present in the Roanoke sampling area (Stations 1-18), and their relationships to sampling date (JULDATE) and various flow configurations (ft ³ /sec) of the Roanoke River in 1984 (data from USGS)	
6.	Multiple linear regression models of Julian date (JULDATE) and river flow, lagged three days (FLOWL3), on mean densities of striped bass and zooplankton present throughout lower Roanoke River and western Albemarle Sound (Stations 1-18) in 1984	•
7.	Distribution and abundance (number/100 m ³) of Stage 1 (with yolk) striped bass larvae in Roanoke River and western Albemarle Sound, North Carolina, in 1984	29
8.	Distribution and abundance (number/100 m ³) of Stage 1 (with yolk) striped bass larvae in Roanoke River and western Albemarle Sound, North Carolina, in 1985	30
9.	Results of Pearson product-moment correlation analysis for densities (number/100 m 3) of two striped bass life stages, their feeding habits, and their relationship to food density (number/m 3) and spatio-temporal variables in 1985	
10.	Multiple linear regression models for densities of two striped bass life stages and their feeding habits in the Roanoke River and western Albemarle Sound, North Carolina (Stations 1-16), in 1985 determine by Stepwise (maximum R-square improvement) Procedure (SAS Institute 1982)	

LIST OF TABLES (continued)

	Page
24.	Relative frequency (%) of larval striped bass size classes (mm TL) collected from 26 April to 10 June 1985 at Station 10 49
25.	Relative frequency (%) of larval striped bass size classes (mm TL) collected from 26 April to 10 June 1985 at Station 11 50
26.	Relative frequency (%) of larval striped bass size classes (mm TL) collected from 26 April to 10 June 1985 at Station 12 51
27.	Relative frequency (%) of larval striped bass size classes (mm TL) collected from 26 April to 10 June 1985 at Station 13 52
28.	Relative frequency (%) of larval striped bass size classes (mm TL) collected from 26 April to 10 June 1985 at Station 14 53
29.	Relative frequency (%) of larval striped bass size classes (mm TL) collected from 26 April to 10 June 1985 at Station 15 54
30.	Stomach contents of striped bass larvae collected from the lower Roanoke River, delta, and western Albemarle Sound, North Carolina, in 1984
31.	Stomach contents of larvae that are probably striped bass, but identifiable only as Morone species, collected from the lower Roanoke River, delta, and western Albemarle Sound, North Carolina, in 1984.
32.	Stomach contents of Stage 1 (with yolk) striped bass larvae collected from the lower Roanoke River, delta, and western Albemarle Sound, North Carolina, in 1985
33.	Stomach contents of Stage 2 (with oil) striped bass larvae collected from the lower Roanoke River, delta, and western Albemarle Sound, North Carolina, in 1985
34.	Stomach contents of Stage 2 (no oil) striped bass larvae collected from the lower Roanoke River, delta, and western Albemarle Sound, North Carolina, in 1985
35.	Taxonomic relationship of zooplankton organism groupings (after Borror and DeLong 1964)
36.	Mean densities (number/m ³), by station, of zooplankton collected in lower Roanoke River, delta, and western Albemarle Sound, North Carolina, in 1984

LIST OF TABLES (continued)

		Page
50.	Chlorophyll <u>a</u> concentration (ug/l) in the Roanoke River and western Albemarle Sound, North Carolina, in 1984	88
51.	Chlorophyll a concentration (ug/l) in the Roanoke River and western Albemarle Sound, North Carolina, in 1985	90
52.	Phytoplankton species and frequency of occurrence (percent of samples containing species) in the lower Roanoke River and western Albemarle Sound in 1984	91
53.	Phytoplankton species and frequency of occurrence (percent of samples containing species) in the lower Roanoke River and western Albemarle Sound in 1985	95
54.	Most frequently occurring phytoplankton species in the Roanoke River and western Albemarle Sound during 1984 and 1985	99
55.	Phytoplankton cell density (cells/ml) in the Roanoke River and western Albemarle Sound, North Carolina, during 1984	101
56.	Phytoplankton wet weight biomass (ug/l) in the Roanoke River and western Albemarle Sound, North Carolina, during 1984	⁷ 102
57.	Phytoplankton cell density (cells/ml) in the Roanoke River and western Albemarle Sound, North Carolina, during 1985	103
58.	Phytoplankton wet weight biomass (ug/l) in the Roanoke River and western Albemarle Sound, North Carolina, during 1985	104
59.	Percentages of total phytoplankton cell types, density, and biomass by size class in the Roanoke River and western Albemarle Sound, North Carolina, in 1984 and 1985	111

LIST OF FIGURES (continued)

		Page
13.	Relationship of sampling date to mean density (number/ m^3) of total zooplankton, Bosmina, cladocerans (excluding Leptodora), and copepods present in the sampling area (Stations I-16) in 1985	77
14.	Relative abundance (% of total cell density) of different algal classes in the Roanoke River and western Albemarle Sound, North Carolina, in 1984, averaged for each sampling station	106
15.	Relative abundance (% of total wet weight) of different algal classes in the Roanoke River and western Albemarle Sound, North Carolina, in 1984, averaged for each sampling station	107
16.	Relative abundance (% of total cell density) of different algal classes in the Roanoke River and western Albemarle Sound, North Carolina, in 1985, averaged for each sampling station	108
17.	Relative abundance (% of total wet weight) of different algal classes in the Roanoke River and western Albemarle Sound, North Carolina, in 1985, averaged for each sampling station	110
19.	Log phytoplankton biomass vs. log zooplankton biomass for Roanoke study area samples in 1984 and 1985	114
20.	Photograph of deformed (above) and normal striped bass larvae collected in the Roanoke River, North Carolina, in 1985	119

INTRODUCTION

For several hundred years the striped bass (<u>Morone saxatilis</u>) fishery in the Roanoke River and Albemarle Sound, North Carolina, has been an important component of the lives of coastal residents as a source of income, sport, and social interaction. The major spawning area for Albemarle Sound striped bass is located in the Roanoke River, a swiftly-flowing coastal stream that empties into the extreme western end of the Sound. Spawning occurs upstream between Halifax (River Mile 120) and Weldon (RM 130), North Carolina, from late April through early June (Hassler et al. 1981). The historical spawning grounds further upstream were blocked by construction of the Roanoke Rapids Dam at RM 137 (McCoy 1959). Eggs develop to the hatching stage as they are transported downstream by currents. After hatching, the larvae are transported downstream through the Roanoke River delta and into western Albemarle Sound to the historical nursery grounds (Street 1975).

Research conducted in Chesapeake Bay suggests that striped bass must have a strong, successful year class at least every six years in order to maintain and preserve stock size; a strong year class has not occurred in Chesapeake stocks since 1970 (USDOI and USDOC 1985). The Albemarle Sound striped bass stock has been in decline for over a decade; a strong year class of Roanoke River striped bass has not been observed since 1970, and no significant year classes have been produced since 1976 (Hassler et al. 1981; USDOI and USDOC 1985).

Studies conducted since the late 1970's have examined several factors that may contribute to the decline of the Roanoke stock. Reduced egg viability was suspected as the initial cause for decline of the adult population (Guier et al. 1980, Hassler et al. 1981), although "adequate" numbers of viable striped bass eggs are spawned each year to produce sufficient recruitment to the population (Kornegay 1981, Kornegay and Mullis 1984). Another potential problem may be poor survival of juvenile striped bass on the nursery grounds in the western Sound (Hassler et al. 1981). The juvenile trawl index conducted each year in Albemarle Sound suggests that the numbers of juvenile striped bass are too low to produce sufficient recruitment to the population (Hassler et al. 1981). Low recruitment of larvae and early juveniles to the nursery ground was observed in

Figure 1. Map of the Roanoke River and western Albemarle Sound, North Carolina, depicting sampling locations used in 1984 and 1985.

m wide from the river mouth to Plymouth, NC and 2.4 m deep by 24.4 m wide from Plymouth to Palmyra.

Outflow of the Roanoke River at the mouth is the second highest of any North Carolina estuary; the annual average is approximately 252 m³/second, or about 0.01 m³/sec/km² (Giese et al. 1979). However, flow rate is highly regulated by several reservoirs created primarily for hydropower generation. The farthest downstream of these reservoirs is Roanoke Rapids Lake (dam at RM 137), which is therefore most important in its effects on flow in the Roanoke River Estuary (Giese et al. 1979). The Roanoke River provides approximately 50% of the freshwater input into Albemarle Sound. The tides and water flow patterns near the river mouth are influenced to a great extent by prevailing winds and amount of water released from Roanoke Rapids Dam. The lower Roanoke River is essentially a freshwater system, even under extreme drought conditions, because of the combination of relatively high outflow, small cross-sectional area, low-flow augmentation from Roanoke Rapids Lake, and low salinity in Albemarle Sound (Giese et al. 1979).

METHODS

Sample Collections

Sampling for ichthyoplankton, zooplankton, and phytoplankton in the lower river and western Sound was conducted in the springs of 1984 and 1985. Collection efforts were initiated just prior to the estimated peak spawning activity of adult striped bass in upstream areas near Weldon and Halifax (Figure 1). In 1984 sampling efforts began on 18 May and terminated on 18 June when striped bass larvae were no longer present in the samples. In 1985, spawning activity was the earliest on record. Sampling efforts began on 26 April and continued through 10 June.

Similar sampling locations were used in 1984 and 1985. Stations 1, 2, 3, and 4 were positioned between Williamston (RM 37.5) and just upstream of the Roanoke River delta. These stations were sampled by North Carolina Wildlife Resources Commission personnel on alternate nights for a two-week period.

ratio. A flowmeter with slow speed propeller was mounted in the net frame. Initially, samples of six minute duration were taken against the current, but sample duration was reduced to three minutes to minimize clogging problems caused by high concentrations of suspended solids in the water. Zooplankton samples were preserved in 5% buffered formalin containing Rose Bengal.

Phytoplankton samples (whole water) were taken at each station by submerging a one-liter plastic bottle just below the water's surface and allowing it to fill. Each sample was preserved with Lugols' acetic acid-iodine solution (Wetzel and Likens 1979). Additional water samples were collected and chilled for laboratory measurements of chlorophyll \underline{a} . Methods of collection and preservation were the same for both years.

Whole water samples were collected from eight locations in 1985 to determine water quality of the Roanoke River just above the spawning grounds, and in the lower river, delta, and western Albemarle Sound. Water samples were collected daily from just below Roanoke Rapids at Weldon, North Carolina (Stations 20 and 21), during the period of 23 April to 6 May. Water samples from the lower river (Stations 1 and 3) were taken by North Carolina Wildlife Resources Commission personnel on alternate nights from 4 May to 16 May. Samples from Station 5 were collected on alternate nights from 4 May through 10 June. Delta (Stations 7 and 10) and western Sound (Station 15) water samples were collected on alternate nights from 4 April through 10 June.

Three water samples were collected at each site by submerging 16-oz. plastic bottles below the water's surface heel-first to a depth of approximately 0.4 m. Two water samples, one for heavy metals analyses and a second for PO_4 -P analyses, were stabilized by packing them in ice. The third sample was preserved with 2 ml of 25% H_2SO_4 for nitrogen and total phosphorus analyses. The samples were shipped by courier to the NCDNRCD Division of Environmental Management (Water Quality Section) in Raleigh, North Carolina, for analysis using U.S. Environmental Protection Agency standard procedures (USEPA 1979). Temperature (^{O}C) was measured by thermometer; dissolved oxygen (mg/l) and pH were measured by Hach kit.

On 27-29 August 1985, N.C. Wildlife Resources Commission personnel monitored temperature, oxygen, and salinity along three transects (6 stations

Figure 2. Map of Albemarle Sound, North Carolina, depicting western (A), central (B), and eastern (C) transects for water quality measurements in August 1985.

THIS PAGE INTENTIONALLY LEFT BLANK

Table 2 (continued).

Variable name	Description
РНҮТОВ	Phytoplankton wet wet biomass (ug/l) averaged for all stations by date
PHYTOD	Phytoplankton cell density (cell/ml) averaged for all stations by date
TZ0	Density (number/ m^3) of all zooplankton averaged for delta and western Sound stations by date
BOSM	Density (number/ m^3) of all <u>Bosmina</u> averaged for delta and western Sound stations by date
CLAD	Density (number/ m^3) of all Cladocerans (excluding <u>Leptodora</u>) averaged for delta and western Sound stations by date
COPE	Density (number/ \mathbf{m}^3) of all Copepods for delta and western Sound stations by date
STAGE1	Density of striped bass larvae with yolk (Stage 1) averaged for delta and western Sound stations by date

Mean daily discharge (cfs x 1000) at Roanoke Rapids, North Carolina in 1984 and 1985 (data from U.S. Geological Survey). Figure 3.

Table 3. Water quality information for lower Roanoke River, delta, and western Albemarle Sound, North Carolina, for the period 26 April - 10 June 1985. Stations as in Figure 1.

					Statio	n		
Variable		20	1	3	5	7	10	15
D.O. (mg/1)	n X S.D. min max	12 8.9 0.67 8.1 9.6	7 7.6 0.53 7.0 8.0	7 6.0 1.41 4.0 8.0	15 6.5 0.55 6.0 7.5	18 6.4 0.92 4.0 8.0	18 6.9 1.24 5.0 9.0	16 6.3 0.9 4.0 8.0
Temp	n x S.D. min max	12 21.9 0.97 21 23.5	7 22.6 0.53 22 23	7 22.4 0.79 21 23	15 23.8 1.61 21	19 24.1 1.47 21	20 25.1 1.85 22 30	19 24.6 1.98 21 28
NH3 ^{-N} (mg/1)	n x S.D. min max	13 0.07 0.05 0.03 0.21	7 0.05 0.02 0.03 0.09	7 0.06 0.02 0.04 0.07	15 0.06 0.04 0.01 0.18	20 0.10 0.19 0.02 0.72	20 0.18 0.18 0.01 0.65	19 0.16 0.12 0.02 0.52
TKN (mg/1)	n x S.D. min max	13 0.33 0.06 0.2 0.4	7 0.27 0.12 0.06 0.4	7 0.29 0.07 0.2 0.4	15 0.27 0.07 0.2 0.4	20 0.40 0.43 0.2 2.0	20 0.46 0.21 0.2 1.0	19 0.44 0.20 0.20 1.0
NO3+NO2 ^{-N} (mg/1)	n X S.D. min max	13 0.16 0.04 0.09 0.22	7 0.21 0.06 0.16 0.31	7 0.22 0.06 0.17 0.30	15 0.23 0.14 0.03 0.54	20 0.21 0.18 0.03 0.94	20 0.16 0.05 0.06 0.26	19 0.19 0.05 0.10 0.33
PO ₄ -P (mg/1)	n X S.D. min max	13 0.04 0.01 0.02 0.07	7 0.01 0.05 0.01 0.02	7 0.01 0.05 <0.01 0.02	15 <0.01 0.05 <0.01 0.02	20 0.01 0.04 <0.01 0.07	20 0.03 0.04 <0.01 0.13	0.03 0.02 0.01 0.10

HEAVY METALS. Aluminum was the only element with concentrations consistently above minimum detectable level (100 ug/l) during the 1985 sampling period (Appendix A). Highest values reached 2,400 ug/l just above the spawning grounds (Station 20) near Weldon, North Carolina. Average concentrations were highest upstream (835.7 ug/l), decreasing downriver to 426-466 ug/l in the delta (Station 10) and western Sound (Station 15, Table 3). Other elements detected in small concentrations were mercury (0.2-0.8 ug/l), lead (200 ug/l), zinc (20-50 ug/l), and copper (30 ug/l) (Appendix A).

Summer Water Quality - Albemarle Sound

Measurements at stations along the transects across the Sound in late August 1985 indicated stratification of the water column in certain locations. Vertical profiles of temperature, salinity, and dissolved oxygen for stations on the westernmost transect "A" indicated there was mixed fresh water at Station 1A in the shallow waters near Horniblow Point (north) and Station 6A east of the railroad trestle (south). The water column was stratified at Stations 2A-5A in the open area of the western Sound, with warmer, fresh water from the Roanoke and Chowan Rivers overlying slightly cooler and brackish water from central Albemarle Sound (Figure 4). The water column across transect "B" was comprised of brackish water of fairly uniform consistency in salinity, temperature, and dissolved oxygen. These data indicated good vertical mixing of the water column in central Albemarle Sound (Figure 5). Vertical stratification of the water column was apparent near the bottom in the deeper areas (Stations 2C-5C) of eastern Albemarle Sound (Figure 6). Most of the water column was brackish water (5 o/oo) overlying a wedge of saltier water (8-11 o/oo). The shallow areas along the north (Station 1C) and south (Station 6C) shores of eastern Albemarle Sound were brackish (5 o/oo), well-mixed waters high in dissolved oxygen (9 mg/1).

Profiles of water temperature ($^{\rm O}$ C), dissolved oxygen (mg/1), and salinity (o/oo) collected in August 1985 from central Albemarle Sound (Transect B), North Carolina. Data provided by Wildlife Resources Commission, Division of Inland Fisheries. Figure 5.

Ichthyoplankton

SPECIES COMPOSITION. Larvae of fish species from both estuarine and freshwater habitats were collected in 1984 and 1985. Those larvae identified to species included striped bass, white perch (Morone americana), pirate perch (Aphredoderus sayanus), common carp (Cyprinus carpio), eastern mudminnow (Umbra pygmaea), yellow perch (Perca flavescens), Atlantic croaker (Micropogonias undulatus), longnose gar (Lepisosteus osseus), Atlantic needlefish (Strongylura marina), Atlantic menhaden (Brevoortia tyrannus), brown bullhead (Ictalurus nebulosus), white catfish (Ictalurus catus), and hogchoker (Trinectes maculatus). Juvenile American eel (Anguilla rostrata) were also collected. Other larval fishes were present but were not identified to species: herring (Clupeidae sp.), Notropis sp., centrarchids, and darters (Percidae). Larvae of the white sucker (Catostomus commersoni) were caught in the lower Roanoke River only in 1984.

A total of 2829 fish identified as striped bass were caught in ichthyoplankton nets in 1984, with the greatest concentration of larvae $(3/m^3)$ at Station 10 on 23 May. Striped bass larvae were more abundant in 1985. A total of 3217 striped bass larvae were collected; greatest numbers $(7.7/m^3)$ of larvae with yolk were found at Station 6 on 12 May. Striped bass in several stages of development were found throughout the study area.

DISTRIBUTION OF STRIPED BASS EGGS. In 1984 striped bass eggs comprised 2.9% of the total catch of striped bass. Eggs were present at Stations 1-6 just after sampling was initiated, and remained in samples through 31 May (Table 4). The most downstream point in the delta for occurrence of striped bass eggs was Station 12 on 22-23 May. Egg abundance (Figure 7) was negatively correlated with sampling date (r=-0.702) and river flow (Figure 8) lagged by three days (FLOWL3, r=-0.685)(Table 5). Julian date and river flow, lagged by three days, explained 60% of the variability in average egg abundance $(n=11; df=9; R^2=0.60; P=0.025)$ in the study area for 1984 (Table 6).

Striped bass eggs were not found at any of the sampling locations in 1985.

Figure 7. Relationship of sampling date to mean density (number/100 m³) of striped bass eggs, larvae with yolk (Stage 1), and larvae without yolk (Stage 2) present in the study area (Stations 1-18) in 1984.

several striped bass life stages and zooplankton present in the Roanoke sampling area (Stations 1-18) and their relationships to sampling date (JULDATE) and various flow configurations (cfs) of the Roanoke River in 1984 (data from USGS). Descriptions of independent variables in Table 2. Numbers given are Pearson Results of Pearson product-moment correlation analyses for average densities of correlation coefficients (r). Table 5.

				-				
•		St	Striped bass			007	Zooplankton	
Independent variable	<u> </u>	Eggs	larvae, yolk	larvae, no yolk	<u> </u>	All	Clado- cerans	cope-
JULDATE	11	-0.702	-0.515	-0.251,	14	0.163	-0.409	0.481
FLOWO	11	-0.026	-0.374	-0.492	14	0.276	0.383	0.078
FL OWL 1	11	0.161	-0.107	-0.298	14	0.100	0.381	-0.041
FLOWL2	11	-0.284	-0.184	-0.336	14	-0.016	0.110	0.182
FLOWL3 *	Π	-0,685	-0.643	-0.242	14	0.007	0.139	-0.061
FLOWL4	11	-0.498	-0.544	-0.160	14	0.204	0.134	-0.077
FL OWMA2	11	-0.045	-0.253	-0.500	14	0.270	0.425	0.094
FLOWMA2L1	1	0.016	-0.215	-0.367	14	-0.031	0.367	0.017
FLOWMA2L2	11	-0.370	-0.356	-0.274	14	-0.034	0.219	0.074
FLOWMA2L3	11	-0.626	-0.576	-0.236	. 14	0.048	0.009	0.017
FLOWMA3	- -	-0.051	-0.195	-0.485	14	0.262	0.432	0.098

DISTRIBUTION OF STAGE 1 LARVAE. In 1984, larvae with yolk (Stage 1) comprised 96% of the striped bass caught and were present in the study area from 22 May until 10 June (Table 7). Stage 1 larvae were most abundant in the lower river (stations 1-4) and delta (stations 5-12). Mean study area density of Stage 1 larvae was negatively correlated with sampling date (r=-0.515) and FLOWL3 (r=-0.643). Prediction of larval abundance using sampling date and flow in the multiple linear regression (Table 6) was significant at P<0.10).

In 1985, stage 1 larvae comprised only 67% of larval striped bass collected. Stage 1 larvae were present in the study area from initiation of sampling (26 April) until 6 June. No stage 1 larvae were present in samples collected on 10 June (Table 8). Peak abundance occurred on 12 May (Figure 9). Greatest densities throughout the study period occurred in the lower river (Stations 1-4) and upper delta (Stations 5-7). Correlation analysis indicated weak, but significant, correlations of Stage 1 larvae with STATION and TIME (Table 9). However, samples were collected in the same order on each sampling trip, which made it impossible to ascertain the relative importance of these two variables on striped bass density. Stepwise regression (SAS Institute 1982) selected STATION and copepod density as two factors predicting the abundance of Stage 1 larvae (P<0.001, n=170); however, the R^2 was quite low (0.113). suggesting that other factors not considered in the analysis were responsible for variability in the data (Table 10). The average density of Stage 1 larvae in the delta and western Sound (Stations 5-15) was not highly correlated with any of the variables considered (Table 11), and none met the 0.15 significance level for entry into a stepwise regression model (Table 12).

DISTRIBUTION OF STAGE 2 LARVAE. In 1984, Stage 2 larvae were limited in number (1.2% of total striped bass catch), and occurred at Stations 3 and 5 in the lower river early in the sampling season. Stage 2 larvae were last observed in samples from western Albemarle Sound on 2 June (Table 13). Correlations of stage 2 larval abundance with sampling date and river flow were not significant (P>0.10) due to the low numbers of larvae collected. An additional 298 striped bass larvae were found in zooplankton catches. No striped bass larvae without oil globules, and no juveniles, were collected in the study area in 1984.

Distribution and abundance (number/100 m 3) of Stage 1 (with yolk) striped bass larvae in Roanoke River and western Albemarle Sound, North Carolina, in 1985. Asterisk (*) indicates no sample collected. Table 8.

4/26/95 * 4 5 6 7 9 9 4/26/95 * * * * * * * * 0.00 2.28 0.20 2.28 4.28 4.28 4.28 9.28 0.00 2.28 4.28 4.28 4.28 4.28 4.28 6.28 6.28 6.28 6.28 6.28 6.28 6.28 6.28 6.28 6.28 6.28 6.28 6.28 6.28 6.00 2.28 6.28 6.28 6.00 2.28 6.00 2.28 6.28 6.28 6.00 2.28 6.00 2.28 6.00 6.28 6.28 6.00 2.28 6.00 6.28 6.28 6.28 1.59 1.50 6.00 2.28 6.00 6.00 2.28 1.50 6.00 6.28 1.50 6.00 6.28 1.50 6.00 6.00 6.29 1.50 6.00 9.00 9.00 9.00 9.00 9.00 <	Stage 1		ı			S		<	1	-	0	=		,	-			Total by	Avg. by
90,77 20,71 7,91 1,05 6,10 55,89 0,00 0,00 0,77 20,77 20,71 1,791 1,05 6,10 55,89 1,13 0,00 0,00 0,00 0,00 0,00 0,00 0,00	DATE	-	2	-	4		9.	1	6	6	2	=	12	=	¥	\$1	15		3
99.77 20.71 7.91 1.05 6.10 55.89 6.00 99.77 20.71 7.91 1.05 6.10 55.89 14.91 5.89 6.00 15.29 115.01 6.63 45.5 5.70 20.00 15.29 115.01 6.63 45.5 5.30 250.83 37.23 0.00 15.46 141.30 13.89 20.04 11.11 91.30 37.23 0.00 15.89 115.01 6.63 45.5 5.30 250.83 37.23 0.00 15.89 115.01 6.63 45.8 14.91 5.89 11.11 91.30 37.23 0.00 11.29 13.14 6.23 77.2 76.78 189.51 173.02 25.28 694.26 41.15 188.21 77.20 27.30 27.30 11.20 11.3	4/26/95		•	-	•		3.74	23,95	2.21	0.0	11,22	0.00	2.20	0,0	0,0	0.0	*	43.32	4,33
9.77 3.71 1.91 1.05 6.10 55.88 16.35 0.00 9.77 4.03 35.79 19.41 95.04 23.05 21.30 5.99 9.52 41.50 16.68 3 4.55 5.30 250.83 377.23 0.00 9.34 141.30 31.93 20.04 31.11 91.10 34.15 51.34 9.34 61.37 71.39 18.39 0.00 11.57 6.25 41.15 95.14 61.37 71.39 18.39 0.00 11.57 6.25 41.15 95.14 61.37 71.39 18.39 0.00 11.57 6.25 177.46 2.70 34.33 41.32 15.31 25.02 83.00 4.00 9.93 9.97 9.93 9.93 9.93 17.55 0.00 1.93 1.03 9.94 9.94 9.94 9.94 9.94 9.94 9.95 9.94 9.95 9.94 9.94 9.94 9.94 9.94 9.95 9.94 9.95 9.95	4/28/95				*	•	39.62	8.80	0.0	2.56	8	0.0	8	2.03	0,00	0.0	*	38.98	3.90
9.7. 2.7.1 7.91 1.05 6.10 55.58 14.91 5.89 6.35 6.35 0.00 6.22 11.50 6.81 5.89 14.91 5.89 6.39 115.01 66.03 5.79 19.01 95.04 23.05 21.30 5.79 19.01 95.04 23.05 21.30 5.79 19.01 95.04 23.05 21.30 20.30 23.15 23.	4/30/85	#				-	5.17	3.70	0.00	22.76	14.90	3.06	53.75	80	0.0	5.09	*	105.43	10.S
99.77 20.71 7.91 1.05 6.10 55.58 14.91 5.89 65.21 20.20 5.79 65.21 20.20 5.79 65.21 20.20 5.79 65.21 20.20 5.79 65.21 20.20 5.79 65.21 20.20 5.79 65.21 20.20 5.79 65.21 20.20 5.79 65.21 20.20 5.79 65.21 20.20 5.79 65.21 20.20 5.79 65.21 20.20 5.79 65.21 20.20 5.79 65.21 20.20 5.79 65.21 20.20 5.79 65.21 20.20 5.20 5.20 65.21 20.20 5.20 5.20 5.20 5.20 5.20 5.20 5.2	5/2/85			=	*	+	6.55	16.35	8	96.0	6.45	33	0.97	8	8	0.0	*	32,86	3.23
76.27 40.03 35.79 19.41 95.04 23.05 21.30 5.79 79.46 141.03 66.93 4.55 5.30 220.83 307.23 0.00 21.76 13.17 76.78 143.11 171.02 352.28 694.26 41.15 13.14 21.76 21.75 76.78 143.11 171.02 352.28 694.26 41.15 13.14 21.70 34.33 13.39 18.39 10.00 11.57 9.23 177.46 42.0 177.46 42.0 42.0 177.46 13.99 8.97 8.99 10.00 22.36 0.06 9.96 <td< td=""><td>5/4/86</td><td>11.06</td><td>17.02</td><td>16.7</td><td>1.05</td><td>6,10</td><td>55.58</td><td>14.91</td><td>5.83</td><td>15,90</td><td>0.0</td><td>8.0</td><td>0.93</td><td>0.0</td><td>0.0</td><td>0.0</td><td></td><td>219.75</td><td>14.65</td></td<>	5/4/86	11.06	17.02	16.7	1.05	6,10	55.58	14.91	5.83	15,90	0.0	8.0	0.93	0.0	0.0	0.0		219.75	14.65
69.30 115.01 66.83 4.55 5.30 250.83 307.23 0.00 73.46 141.30 33.97 270.54 31.11 91.30 34.15 51.34 85.14 61.37 77.39 18.38 0.00 11.57 8.22 177.46 2.70 34.33 43.32 15.31 25.02 83.00 4.30 11.50 14.32 15.31 25.02 83.00 4.30 11.51 15.02 83.00 4.30 11.52 15.31 25.02 83.00 22.35 0.93 11.53 15.51 15.50 15.31 15.00 15.35 0.93 11.54 15.51 15.50 15.35 0.93 11.55 15.51 15.50 0.00 1.93 1.03 11.55 15.51 15.50 0.00 1.93 1.03 11.55 15.51 15.50 0.00 0.00 0.00 11.51 15.51 15.52 0.00 0.00 0.00 11.52 15.51 15.52 0.00 0.00 0.00 0.00 11.53 13.47 33.39 473.15 426.34 1303.55 1175.87 290.35	56/9/5	76.27	40,03	35.79	19.41	8	23.05	21.30	5.79	3,81	800	8.32	8,0	8	8.0	0.0	•	328.81	21.92
73,46 141,30 31,87 270,54 31,11 91,30 34,15 51,34 51,34 51,35 52,75 76,78 149,51 173,02 352,28 64,26 41,15 13,46 52,70 34,32 13,39 13,39 0.00 11,57 64,20 11,35 13,34 51,34 520,35 44,55 51,34 520,35 44,5	5/8/95	8	115,01	66.83	4.55	2,30	250,83	37,23	800	800	800	0.8	8	88	8.0	8,0	*	829,23	55.28
21.75 21.75 76.78 149.51 171.02 552.28 694.26 41.15 85.14 61.37 71.39 18.39 0.00 11.57 8.23 177.46 2.70 34.30 41.32 15.31 25.02 83.00 4.30 4.30 4.30 4.30 4.30 4.30 4.30	5/10/35	73,46	141.30	33,97	270.94	31,11	01.10	34.15	33,34	76,21	000	12.05	8	3.09	1.59	2	*	812.95	8.8
85.14 61.37 73.39 18.38 0.00 11.57 8.23 177.46 2.70 34.32 43.28 15.31 25.02 88.30	5/15/35	23,75	20.75	76.78	149.51	173.02	352.28	694.26	41.15	173,01	8	16.74	0.00	3,43	9.24	23.85	-	1756.77	117.12
2.70 34.30 43.32 15.31 25.02 88.00 4 4.30 2.70 34.30 43.32 15.31 25.02 88.00 4 4.30 2.70 34.30 43.32 15.31 25.02 88.00 4.30 2.70 34.30 43.32 15.31 25.02 13.39 13.30 2.70 34.30 43.34 43.39 43.35 426.31 1303.8 1135.87 20.35	5/14/85	85.14	61.37	73.39	19,38	0,0	11.57	8,23	177.46	66.61	8.0	8.46	0,0	90.1	8.0	7.25		2.9°.8	8.8
421.89 433.47 343.39 473.15 426.34 1307.89 1175.81 5.00 421.89 433.47 343.99 473.15 426.34 1307.89 1175.87 20.35 450.00 421.89 433.47 343.39 473.15 426.34 1307.89 1175.87 20.35 450.00	5/16/35	2.70	χ χ	43.92	15.31	22,02	83.00	*	4.30	0.0	32.01	3.47	0,0	0 .0	0.0	2.37	•	281.30	17.95
421.09 433.47 343.39 473.15 426.34 1300.59 115.87 66.27 66.19 6.19 6.19 6.19 6.19 6.19 6.19 6.1	5/18/85	*	*		4	*	55.49	6.45	0.93	93,83	0.0	E. K.	8.9	0.0	0,0	9,0		178.01	17.80
421.89 433.47 343.39 473.15 426.34 1300.89 1375.86 61.87 66.73 66.	5/50/35	•	•	+	•	40.17	1.8	13.39	8.97	3,26	09.	2.X	86.23	0.0	0,0	2.33	*	102.88	9.38
421.89 433.47 343.39 473.15 426.34 1303.59 135.89 63.35 45.25 63.35 45.35 63.35 45.35 63.35 45.35 63.35 45.35 63.35 45.35 63.35 45.35 63.35 45.35 63.35 45.35 63.35 45.35 63.35 64.55 64.55 63.35 64.55 63.35 64.55 63.35 64.55 63.35 64.55 63.35 64.5	5/22/85	*	*	*	*	8,23	0.0	22.38	96.	0.0	80	8.	8	80	0.0	8.0	*	55,52	5.06
421.89 433.47 343.39 473.15 426.34 1300.59 1175.87 290.35 450.77 28.8 1.01 0.00 0.00 0.00 0.00 0.00 0.00 0	5/24/95	*	*	*	*	8,3	2	0.84	9. 8	1,08	o.9	16.0	27.93	8.0	0.0	9.0	*	47.70	4. E.
421.89 433.47 343.39 473.15 426.34 1300.59 1175.87 290.35 450.77 61.92 44.9 61.92 61.92 61.92 41.92 41.92 61.92 41.92 61.92 41.92 61.92 41.92 61.92 41.92 61.31 78.42 50.01 61.89 14.52	5/26/35	-	•		*	15.60	0.0	1.93	8.	0.0	0.0	3.25	0.0 0	8.0	0,0	9.0	*	21.86	8
421.89 433.47 343.39 473.15 426.34 1300.59 1175.87 290.35 450.70 67.00 6	56/62/5	+		•	*	0.71	2.80	<u>5</u>	0.0	3 .	9.0	6,0	3.01		*	#	*	6.29	8.
421.89 433.47 343.39 473.15 426.34 1300.59 1175.87 250.35 460.77 61.92 43.06 63.31 28.42 50.03 61.89 14.52	6/2/95			*		0.9	8,87	0.0	8.23	0.0	2.10	0.0	0 <u>.0</u>	8.0	0.0	<u>0</u> .0	•	80.03 0.03	1.83
421.89 433.47 343.39 473.15 426.34 1300.59 1175.87 290.35 4	9/9/35	*	*	*	*	89.	4.49	8.0	8.0	90.1	8.0	9.0	8.0	<u>.</u> .	80.0	0.0	4	7,65	0.70
421.89 433.47 343.39 473.15 426.34 1300.59 1175.87 230.35 4 60.27 61.92 43.05 63.31 28.42 50.03 61.89 14.52	58/e1/9	*	#	•	•	0,0	0.0	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0	0.0	0.0	0.0
421.89 433.47 343.39 473.15 426.34 1300.59 1175.87 230.35 4 60.27 61.92 43.06 68.31 28.42 50.03 63.89 14.52									٠.										
60.27 61.92 4).06 63.31 28.42 50.03 61.89 14.52	Total by station	421.89	433.47	343,39	473.15	426.34	1300.59	1175.87	230.35	463.04	74.93	97.18	19.61	19.51	10,83	44.38	00.0		
	Avg. by station	60.27	61.92	4).06	63.31	28.42	8.0	61,89	14.52	23.15	3.75	4.86	8.3	. 03	0.57	2.3x	0.0		

of two striped bass life stages, their feeding habits, and their relationship to food density (number/m³) and spatio-temporal variables in 1985. Numbers given are Pearson correlation coefficients (r). Descriptions of independent variables in Results of Pearson product-moment correlation analysis for densities (number/100 m^3) Table 2. G. Table

		.	Density	- Tuern		% of la	% of larvae with food	th food
Independent variable	c	Tarvae, yolk	-	larvae, no yolk	u	larvae, yolk	c	larvae, no yolk
JULDATE	176	600.0-	176	-0.013	66	-0.291**	84	-0.502***
STATION	176	-0.298***	176	0.246***	. 66	0.144	84	0.278*
ſIME	176	0.177*	176	0.144	66	-0.244*	84	-0.304**
CLADOCERA	171	-0.040	171	-0.038	. 62	0.249*	81	0.401***
COPEPODA	171	-0.119	171	-0.109	95	0.380***	81	0.369***
	1. -							

Significance level: * P<0.05 ** P<0.01 *** P<0.001

Table 11. Results of Pearson product-moment correlation analysis for densities of two striped bass life stages, zooplankton, phytoplankton and spatio-temporal variables in 1985. Numbers given are Pearson correlation coefficents (r). NA= value not applicable.

		Strip		*** ****		Zooplankton		Phytoplankton	ınkton
Independent	c	Jarvae,	, larvae,	lle	Bos- mina	Clad-	Cope-	wet wt.	cell
			#15f 21				550		Carcina
JULDATE	20	-0.198	-0.268	-0.715***	-0.725***	-0.684***	-0.594**	0.063	**099°0-
TEMP	50	-0.272	-0.324	-0.384+	-0.333	-0.323	-0.321	0.020	-0.578**
FL 0W0	20	0.216	-0.055	-0.493*	-0.485*	-0.411+	-0.537*	-0.286	-0.073
FLOWL1	20	-0.188	-0.237	-0.323	-0.345	-0.299	-0.289	-0.107	-0.436+
FLOWL2	20	-0.078	-0.087	-0.133	-0.154	-0.170	-0.069	-0.093	-0.026
FLOWL3	50	-0.236	-0.009	-0.289	-0.183	-0.244	-0.329	0.238	-0.186
BOSM	50	-0.165	-0.191	0.893***	NA NA	0.870***	0.791***	-0.087	0.471*
CLAD	20	-0.116	-0.131	0.960***	0.870***	NA	0.703***	-0.058	0.606**
3 0 00	20	-0.333	-0.148	0.863***	0.791***	0.703***	NA	-0.347	0.209
120	20	-0.217	-0.145	NA NA	0.893***	***096.0	0.863***	-0.170	0.522*
PHY TOB	20	-0.261	-0.262	-0.170	-0.087	-0.058	-0.347	NA	-0.166
PHY TOD	50	0.253	-0.257	0.522*	-0.471*	0.607**	0.209	-0.167	NA V

Significance level: + P<0.10 * P<0.05 ** P<0.01 *** P<0.01

Table 12. continued.

Dependent variable	df	Variables Considered	Model Selected	B _i	Regression coefficient	R ²	Prob>F	၁
Phytoplankton:	<u>.</u>							
wet weight biomass	19	JULDATE, TEMP, FLOWL1, FLOWL2, FLOWL3	none met t	ne 0.15 si	none met the 0.15 significance level for entry into model	for entry	into model	
cell density	19 19 19 19 19 19 19 19 19 19 19 19 19 1	JULDATE, TEMP, FLOWO, FLOWL1, FLOWL2, FLOWL3	JUL DATE FLOWO	b0 b1 b2	27732.550 -194.609*** 0.503+	0.531	0.002	2.202

Significance level: + P<0.10 * P<0.05 ** P<0.01 *** P<0.001

36

Stage 2 larvae represented 33% of the striped bass collected in 1985. Stage 2 larvae occurred infrequently in samples collected at the end of April, but increased in abundance through mid-May (Table 14). Stage 2 larvae were collected through 10 June 1985, but were not abundant after 22 May. Greatest densities of Stage 2 larvae were located in the lower river and upper delta (Stations 4-9). Correlation analysis confirmed a significant correlation of Stage 2 larval density with STATION (Table 9). Average density of Stage 1 larvae in the study area was the best predictor of average Stage 2 densities (R^2 =0.40, n=20, P=0.002) as determined by Stepwise procedure (Table 12), suggesting that striped bass larvae remained in the lower Roanoke River and delta to develop and grow in 1985.

MOVEMENT, GROWTH, AND DEVELOPMENT. Striped bass larvae were subdivided into 15 size class groupings of 0.5-mm intervals to estimate movement, growth and development within the study area in 1985. The number of larvae falling into each size class for any given station and date were converted to percentages to allow comparison of relative frequency of occurrence by date. Size of larvae increased with distance from the spawning ground. Larvae collected at Station 1 (Williamston) ranged in size from 3.5-6.5 mm TL (Table 15). Most larvae were 5.0-6.0 mm TL, suggesting that river flow transported the larvae quickly through the Williamston area. Fish at Station 2 were slightly Targer than those caught upstream, ranging from 4.0 mm to 7.0 mm TL. A second cohort of smaller striped bass moved through this region on 10 May 1985 (Table 16). The second cohort was observed moving through Station 3 (Jamesville) on 12 May (Table 17), and through Station 4 approximately the same time (Table 18). Larval striped bass caught at upper delta stations (Stations 5-7) were all between 5.0 and 7.0 mm TL. Passage of smaller-sized cohorts was evident on the following dates: 26 April, 6 May, 20 May, and 2 June (Tables 19, 20, 21). Larvae in the lower delta (Stations 8-12) ranged from 5.0 mm TL to over 10.0 mm TL, suggesting that larvae remained in the lower delta area to feed and grow (Tables 22, 23, 24, 25, 26). The largest striped bass larvae were caught in Batchelor Bay (Stations 13-15), most of which had absorbed the yolk and oil. Sizes ranged from 5.0-24.0 mm TL (Tables 27, 28, 29). Few larvae were caught in

Relative frequency (%) of larval striped bass size classes (mm TL) collected from 26 April to 10 June 1985 at Station 1. Asterisk (*) indicates no sample collected. Table 15.

		·c	*			 		ize Cl	Size Class (mm)	æ							
Date	=	3.5	4.0	4.5	5.0	5.5	0.9	6.5	7.0	7.5	8.0	8.5	9.0	9.5	10.0 >10.0	10.0	Tot. %
	:	+		1	1	4	4	4		,	4	,	+	+	4	+	*
4/20	k -	k +	k +	k -{	k +	 	ĸ +	e 4	< 4	()	٠ +	٠ +	()	٠ +	: +	· +	: +
4/58	¥	×	*	× .	*	 K	K	k	K	K	e .	< .	• •	٠ ،	٠.		٠ .
4/30	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	ĸ
5/05	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
5/04	62	2	11	.1e	27	16	. 9Z	2	0	0	0	0	0	0	0	0	100
2/06	54	0	0	Ó	2	.15	81		0	0	0	0	0	0	0	0	100
5/08	46	0	2	7	11	22	. 19	0	0	0	0	0	0	0	0	0	100
5/10	99	0	0		. 43	55	ις ·		0	0	0	0	0	0	0	0	100
5/12	119	0	0 :	0	47	53	0	0	0	0	0	0	0	0	0	0	100
5/14	52	0	0	0	15	81	4	0	0	0	0	0	0	0	0	0	100
5/16	က	0	0.	0	49	33	0	0	0	0	0	0	0	0	0	0	100
5/18	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
5/20	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
5/22	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
5/24	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
5/56	*	*	*	*.	*	*	*	*	*	*	*	*	*	*	*	*	*
5/58	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
6/02	*	*	*	*	*,	*	*	*	*	*	*	*	*	*	*	*	*
90/9	*	*	*	*	*	*	*	*	ķ	*	*	*	*	*	*	*	*
6/10	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
											,						

Relative frequency (%) of larval striped bass size classes (mm TL) collected from 26 April to 10 June 1985 at Station 3. Asterisk (*) indicates no sample collected. Table 17.

								Size C	Size Class (mm)	mm)							
Date	=	3.5	4.0	4.5	5.0	5.5	0. 9	6.5	7.0	7.5	8.0	8.5	9.0	9.5	10.0 >10.0	10.0	Tot. %
				.,													
4/56	*	×	k	*	×	×	*	×	ĸ	×	ĸ	×	k	×	×	ĸ	×
4/28	*	+k	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
4/30	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
5/05	*	*	*	*	*	*	*	*	*	*	·*	*	*	*	*	*	¥
5/04	28	0	0	0	0	0	36	46	18	0	0	0	0	0	0	0	100
90/9	35	0	0	က	0	ဏ	69	53	က	0	0	0	0	0	0	0	100
2/08	48	0	0	0	0	~	63	35.	0	0	0	0	0	0	0	0	100
5/10	. 37	0	0	0	0	14	78	ထ	0	0	0	0	0	0	0	0	100
5/12	23	0	0	0	22	22	22	0	0	0	0	0	0	0	0	0	100
5/14	40	0	0	0	0	m	93	ഹ	0	0	0	0.	0	0	0	0	100
5/16	34	0	0	0	က	0	79	18	0	0	0	0	0	0	0	0	100
5/18	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
5/20	*	*	*	*	+	*	*	*	*	*	*	*	*	*	*	*	*
5/55	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
5/24	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
5/26	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
5/59	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
20/9	¥	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
90/9	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
6/10	*	*	*.	*	*	*	*	*	*	*	*	*	*	*	*	*	*
	į		. •					_	;	i					i	ļ	1

Relative frequency (%) of larval striped bass size classes (mm TL) collected from 26 April to 10 June 1985 at Station 5. Asterisk (*) indicates no sample collected. Table 19.

	Tot. %	*	*	*	*	100	100	100	100	100	*	100	*	100	100	100	100	100	100	100	*
	10.0	*	*	*	*	0	0	0	0	0	*	0	*	0	0	0	0	0	0	0	*
	10.0 >10.0	*	*	*	*	0	0	0	0	0	*	0	*	0	0	0	0	0	0	0	*
!	9.5	*	*	*	*	0	0	0	0	0	*	0	*	0	0	0	0	0	0	0	*
	9.0	*	*	*	*	0	0	0	0	0	*	0	*	0	0	0	0	0	0	0	*
	8.5	*	*	*	*	0	0	0	0	0	*	0	*	0	0	0	0	0	0	0	*
	8.0	*	*	*	*	0	0	0	0	0	*	0	*	0	0	0	0	0	0	0	*
(m	7.5	*	*	*	*	0	0	0	0	0	*	0	*	0	0	0	0	0	0	0	*
Size Class (mm	7.0	*	*	.∗	*	38	. 2	13	က	7	*	~	*	0	0	11	0	0	0	0	* .
ize Cl	6.5	*	*	*	*	38	28	58	18	25	*	Π	*	0	6	0	. 20	100	0	0	¥
0,	0.9	*	*	*	*	25	99	28	9/	69	*	88	*	61	87	83	8	0	100	0	*
	5.5	*	*	*	*	0	4		m m	~	*	0	*	35	4	0	O	0	0	100	*
	5.0	*	*	*	*	0	0	0	0		*	0	*	80	0	0	0	0	0	0	*
	4.5	*	*	*	*	0	0	0	0	0	*	0	*	0	0	0	0	0	0	0	*
. =	4.0	*	*	*	*	0	0	0	0	0	*	0	*	0	0	0	0	0	0	0,	*
	3.5	*	*	*	*	0	0	0	0	0	*	0	*	0	0	o [.]	0	0	0	0	*
	= :	*	*	*	*	8	123	29	33	96	, O	65	0	38	46	<u>م</u>	15.	<u>.</u>	-		0
	Date	4/26	4/28	4/30	5/05	5/04	2/06	5/08	5/10	5/12	5/14	5/16	5/18	5/20	5/55	5/24	2/56	5/59	6/02	90/9	6/10

Relative frequency (%) of larval striped bass size classes (mm TL) collected from 26 April to 10 June 1985 at Station 7. Asterisk (*) indicates no sample collected. Table 21.

	Tot. %	100	100	100	100	100	100	100	100	100	100	*	100	100	100	100	100	100	100	*	100	
	>10.0	0	0	0	0	0	0	0	0	0	0	*	0	0	0	0	0	0	0	*	0	
	10.0 >	0	0	0	0	0	0	0	0	0	0	*	0	o !	0	0	0	0	0	*	0	
	9.5	0	0	0	0	0	0	0	0	0	0	*	0	0	0	0	0	0	0	*	0	
	0.6	0	0	0	0	0	0	0	0	0	0	*	0	0	0	0	.0	0	0	*	0	
	8.5	0	0	0	0	0	0	0	0	0	0	*	0	0	0	0	0	0	0	*	0	
	8.0	0	0	0	0	0	0	0	0	0	0	*	0	0	0	0	0	0	0	*	0::	
(WE	7.5	0	0	0	0	0	0	0	0	0	0	*	0	0	0	0	0	0	0	*	0	
ass (7.0	0	50	0	4	0	12	က	0	_	0	*	0	0	0	0	0	0	0	*	0	
ize Cl	9 ~	13	09	6	36	16	38;	. 56	6	12	•	*	0	დ	0	100	20	0	0	*	0	. <i>.</i>
	0.9	- 63	20	91	52	. 65	20	63	09	78	88	*	89	83	82	0	20	100	20	*	0	
	5.5	19	0	0	8	19	0	7	35	. /	9	*	32	4	15	0	0	0	20	*	20	
	5.0	9	~ •	0	0	0	0	-	0	~	0	*	0	4	0	0	0	0	0	*	20	
	4.5	0	0	0	0	0	0	0	0	0	0	*	0	0	0	0	0	0	Ö	*	0	
	4.0	0	. O	0	0	0 .:	0	0	0	0	O	*	0	0	0	0	0	0	0	*	<u>٠</u>	
	3.5	0	0	0	0	0	0	0	0	0 .	0	*	0	0	0	0	0	0	0	*	0	•
		16		Π	25	43	56	152	47	6	11	*	- 28	24	09		2	m	2	0	2	
	Date	4/26	4/28	4/30	5/05	5/04	9/06	5/08	5/10	5/12	5/14	5/16	5/18	5/20	5/25	5/24	5/26	5/59	6/02	90/9	6/10	

Relative frequency (%) of larval striped bass size classes (mm TL) collected from 26 April to 10 June 1985 at Station 9. Asterisk (*) indicates no sample collected. Table 23.

23	14 14 0	2		4.0 4.0	4	ء ا	0	7.	S S	ize Cl	Size Class (mm 6.5 7.0	m) 7.5	8.0	8.5	0.6	9.5	10.0 >10.0	10.0	Tot. %
* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *		7.0 D.0	0.0	0.0		,				?	:			?	;	2		
14 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	14 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							*		*	*	*	*	*	*	*	*	*	*
23 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	23	7 0 0 0 0 14 29						59		59	14	14	0	0	0	0	0	0	100
29 14 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	29 14 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							20		23	23	S	0	0	0	0	0	0	100
	* 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0	0	0	0	0	0		14		53	59	14	0	14	0	0	0	0	100
	* 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0		 S	 S	 S	 S		63		21	2	0	0	O	0	0	0	0	100
	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	0	0	0		88		:13	0	0	0	0	0	0	0	0	100
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9	9	9	9	9		88		0	0	0	0	0	0	0	0	0	100
1 4 0 0 0 0 0 0 0 0 0 0 0 0 0	1 4 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 4	4	4	4	4	4 57	22		38	0	0	0	0	0	0	0	0	100
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	137 0 0 0 0 1 81	0 0 0 0 1 81	0 0 0 1 81	$0 \qquad 0 \qquad 1 \qquad 81$	$0 \qquad 1 \qquad 81$	1 81	81		17	-	0	0	0	0	0	0	0	100
		0 0 0 0 0						79		16	4	0	0	0	0	0	0	0	100
								75		0	0	0	0	0	0	<u> </u>	0	0	100
		56 0 0 2 14 82						82		2	0	0	0	0	0	0	0	0	100
* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	* * * * * * * * * * * * * * * * * * *	0 0 0 0 1						. 29		33	0	0	0	0	0	0	0	0	100
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	* * * * * 0	* * * * * *	* * * *	* * *	* *	*	*		*	*	*	*	*	*	*	*	*	*
* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	2 0 0 0 0 0 50	09 0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 00	0 0 20	0 20	20		0	0	0	0	0	0	0	0	20	100
								*		*	*	*	*	*	*	*	*	*	*
* * * * * * * * *	* * * * * * * * * *							0		0	0	0	0	0	0	0	0	0	100
	0 0 0 0 0 0 0							*		*	*	*	*	*	*	*	*	*	*
* * * * * * *	* * * * * * * * * * * * * * * * * * * *	1 0 . 0 . 0 . 100 0						0		0	0	0	0	0	0	0	0	0	100
		-	-	-	-	-	-	*		*	* *	*	*	*	*	*	*	*	*

Table 25. Relative frequency (%) of larval striped bass size classes (mm TL) collected from 26 April to 10 June 1985 at Station 11. Asterisk (*) indicates no sample collected.

	Tot. %	*	*	100	00 5	100	100	100	100	100	100	100	100	100	100	100	100	*	*	*	*	
	10.0	*	*	0	0	0	0	0	0	0	4	0	13	0	0	0	0	*	*	*	*	
	10.0 >10.0	*	*	0	0	0	0	0	0	0	0	0	0	0	0	0	0	*	*	*	*	
	9.5	*	*	0	0	0	0	0	0	0	0	0	0	0	0	0	0	*	*	*	*	
-	9.0	*	*	0	0	0	7	0	0	0	0	0	0	0	0	0	0	*	*	*	*	
	8.5	*	*	0	0	100	0		0	0	0	0	0	0	0	0	Ö	*	*	*	*	
	8.0	*	*	33	20	0	0	0	0	0	0	0	0	0	0	0	0	*	*	*	*	
(m	7.5	*	*	33	0	0	0	0	0	0	0	0	0	0	0	0	0	*	¥	*	*	
ass (mm)	7.0	*	*	33	20	0	7	0	0	0	0	0	0	0	.09	0	0	*	*	*	*	
Size Class	6.5	*	*	0	0	<u> </u>	<u>;</u>	· 100	0	11	_	o	. 13	0	. 40	0	33	*	*	*	*	
S	0. 0	*	*	0	0	0	73	0	<i>2</i> 9	83	88	83	63	100	0	100	29	*	*	*	*	
	5.5	*	*	0	0	 O	7	0	33	0	0	17	13	0	 O	O	O	*	*	*	×	
	5.0	*	*	0	0	0	0	0	0	9	4	0	0	0	0	0	0	*	*	*	*	
	4.5	*	*	0	0	٥	0	0	0	0	0	0	0	0	0	0	0	*	*	*	*	÷
	4.0	25 °; ★	*	0	0	0	0	0	0	0	0	0	Ó	0	0	0	0	*	*	*	- *	
,	3.5	*	*	0	O	O	0	0	ō	0	0	Ö	0	0	· 0	0	0	*	*	*	*	
	c .	0	0	က	2	~	15	,i	12	18	27	9	16	2	Ś	-	m	0	0	· C	· C	
	Date	4/26	4/28	4/30	5/05	5/04	2/06	5/08	5/10	5/12	5/14	5/16	5/18	5/20	5/22	5/24	5/26	5/29	6/02	90/9	6/30	

Relative frequency (%) of larval striped bass size classes (mm TL) collected from 26 April to 10 June 1985 at Station 13. Asterisk (*) indicates no sample collected. Table 27.

Size Class (mm)

Date	C	3.5	4.0	4.5	2. 0	5.5	0.9	6.5	7.0	7.5	8.0	8.5	9.0	9.5	10.0	>10.0	Tot. %
5.	,		+	1	4	•	4	4	+	,	,	+	+	+	+	+	+
97/5	-	×	k	Ŕ	ĸ	K	K	K	ĸ	•	•	•	t	•	•	•	
4/28	14	0	0	0	0	0	_	21	64	_	0	0	0	0	0	0	100
4/30		0	0	0	0	0	0	0	0	0	0	100	0	0	0	0	100
5/02	: : m	0	0	0	0	0	0	33	33	0	33	0	0	0	0	0	100
5/04	0	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
90/9	С	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
5/08	, o	0	0	, -	0	0	44	56	0	0	0	0	0	0	0	0	100
5/10	4	0	0	0	25	0	52	25	55	0	0	0	0	0	0	0	100
5/12	2	0	0	0	0	0	09	40	0	0	0	0	0	0	0	0	100
5/14	13	0	0	0	15	0	82	0	0	0	0	0	0	0	0	0	100
5/16	0	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
5/18	m	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
5/20	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
5/22	0	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
5/24	<u>-</u>	0	0	0	0	0	100	0	0	0	0	0	0	0	0	0	100
5/26	0	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
5/29	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
6/02	0	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
90/9	_	0	0	0	0	0	100	0	0	0	0	0	0	0	0	0	100
6/10	0	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*

Relative frequency (%) of larval striped bass size classes (mm TL) collected from 26 April to 10 June 1985 at Station 15. Asterisk (*) indicates no sample collected. Table 29.

	Tot. %	*	*	100	*	100	*	*	100	100	100	100	100	100	100	*	*	*	*	*	*
	10.0	*	*	0	*	0	*	*	0	0	0	17	0	98	20	*	*	*	*	*	*
	10.0 >10.0	*	*	0	*	0	*	*	0	0	0	0	0	0	0	*	*	*	*	*	*
	9.5	*	*	0	*	0	*	*	0	0	0	0	0	0	0	*	*	*	*	*	*
	9.0	*	*	0	*	0	*	*	0	0	0	0	0	0	0	*	*	*	*	*	*
	8.5	*	*	0	*	0	*	*	0	0	0	0	0	0	0	*	*	*	*	*	* .
	8.0	*	*	0	*	0	*	*	0	0	0	0	0	0	0	*	*	*	*	*	* .
(E	7.5	*	*	0	*	0	*	*	0	0	0	0	0	0	0	*	*	*	*	*	*
ass (m	7.0	*	*	100	*.	0	*	*	0	0	0	0	0	0	0	*	*	*	*	*	*
Size Class (mm)	6.5	*	*	0	*	100	*	·*	0	. 12	0	0	0	0	0	*	*	*	*	*	*
27.5 H	0.0	**	*	0	*	0	*	*	71	83	71	67	100	14	20	*	*	*	*	*	* '
	5.5	*	*	0	*	0	*	*	29	٠. ئ	59	0	0	0	0	*	*	*	*	*	*
	5.0	*	*	0	*	0	*	*	0	0	0	17	0	0	0	*	*	*	*	*	*
	4.5	*	*		*	0	*	*	0	0	0	0	0	0	0	*	*	*	*	*	*
_	4.0	*	*	0	*	0	*	*	0	0	0	0	0	0	0	*	*	*	*	*	*
-	3.5	*	*	Ö	*	0	*	*	0	0	0	0	0	0	0	*	* * 33	*	*	*	*
	<u>د</u> .	. · · O	0	·—	0	2	0	0	7	41	7	9	-	7	~	0	0	*	0	0	*
	Date	4/26	4/28	4/30	5/05	5/04	2/06	5/08	5/10	5/12	5/14	5/16	5/18	5/20	5/22	5/24	5/26	5/29	6/05	90/9	6/10

Table 30. Stomach contents of striped bass larvae collected from the lower Roanoke River, delta, and western Albemarle Sound, North Carolina, in 1984. Larval count = number in feeding condition; * = value not applicable.

(m/d/y) ti 5/23/84 5/25/84 5/25/84	tion co	countS	Speries			: :	*			-	
5/23/84. 5/25/84 5/25/84	က်		E .	examined	Stage	Mean	Mean Min. Max.	Max.	gut	100d	rood ltem
5/25/84 5/25/84 5/25/84		1	MOSA	1	011	£.0°	*	÷	100	0	
5/25/84 5/25/84	7	_	MOSA	<u>.</u>	010	0.9	*	*	100	0	
	13	# 	MOSA:		OIL YOLK	6.0	□ * *	* *	100	00	
5/27/84	13		MOSA	—	011	0.9	*	*	100	0	
5/29/84		2	MOSA	•••	011	.5.5	*	*	100	0	
5/29/84	6 5	<u></u> -	MOSA	_	016	ນີ້	* *	* *	100	0 0	1 hootle larva
5/29/84	15	7 7	MOSA	- €	011	9°°°	5.0	0.9	67	33	2 Daphnia
5/31/84	11		MOSA	œ	011	0.9	ري دي *	, 57	100	00	
10/20/3		-) -		9	*	: +	001	· c	
6/02/84	် ၂၂၈ ၂၂၈		MOSA			0.0	: +c -{	· +c -	00.		
6/02/84	14	 1	MOSA	 4	YOLK YOLK	o. o	¥	k	001	Þ	
6/08/84 6/08/84	14 15	1 2	MOSA MOSA	7 2	YOLK	5.5	5.5	* 5.0	100	100	1 Daphnia
6/10/84	14		MOSA		016	6.5	*	*	100	0	
	;·										

Stomach contents of Stage 1 (with yolk) striped bass larvae collected from the lower Roanoke River, delta, and western Albemarle Sound, North Carolina, in 1985. n = number examined; * = value not applicable. Table 32.

													_	
-								10000	1000	type) e			
Date	Sta- tion		Fish length Mean Min Max	lengt Min	Max	% with food	lΩ Œ	Cope- podite Ad	Adul t	Bos- mina	Alon- ella	Daph- nia	Chy- dorus	Other
4/26/85		~	5.5	2.5	5,5	0 5	· · ·							
	~ α	<u>-</u>	ກໍເ		0	2 5		٠ د د)))					
-	9 0	<u>ه</u> د	9	6.0	7.0	9		0.0	0.0					
-	12	-	7.0	#		8		0.0	0.0	0				
4/28/85	ص	55	6.3	5,5	^	66		0.0	0.0	3.0				
	7	S	6.5	6.0	_	20	,	0.0	0.0	4.0				
	6	~	6.7	6.5		20		0.0	0.0	3.0				
	21	~	6.5	0.9	_	90	-	1.0	0.0	5.0				
	Ξ,	m	9.9		٠ <u>٠</u>	8	- ,		0.0	0.0				
4/30/85	، ص	N.	9	0.0	_ '	001		0.0	0.0	5.5				
	~ '	₹ ;	9	9.0	•	100		0.2.	0.0	0.				
	5	₹'	6	9		98		 O	o. 0	9.9				
	≘:	o n (9.0	0		9:		4.4	0.0	2.7				
	=:	٠,		0.7		33		5.0). 			4	
	22	ē.	9,0	9	ָה פֿיַר	3 5	-	2.0	9.0	ء د د	1.0	- - -	7.0	
307 607 3	2 '	4	2.0	•		36	-	•						
ca/20/c	• ~	0 5	2.0	9		2 5	_	,	3.0					
	٠ ۵	•	,	; •		ζ ς	-	7.0		?				
	^ =	• ^		,	· a	9 6		4	•	. r				
	::		:	: *	*	9		:		;				
5/04/85	: 7	. ^	ی د نی	9		5		0	0.0	8				
	· vs	ص	6.5	9		67		0.0	0.0	1.6				
	ص	82	6.4	6.0	9.5	2	_		0.0	3.0				
	. 7	61	9.0	5,5		63	٠.	0.0	0.0	5.9				
	∞	9	6.8	6.0		83		7.4	0.0	8.0				
	~	15	6.3	5.5		69		0.5	0.0	1.4				
	15	-	6.0	*		100		0.0	0.0	0.9				
5/06/85	~	7	6.4	6.0		7		0.0	0.0	2.0	٠			
	s.	35	6.2	6.0		53	-		0.0	1.4		0.1		
	•	\$	9.0	9.0		72	,	2.0	0.0	2.3				<0,1 ostracod
	7	24	6.3	6.0	7.0	7.1	_	0.0	0.0	2.8	0.1			<0.1 unident, cladoceran; detritus
	æ	Ś	7.3	·.0		100	. ,	2.0	0.0	2.8				
	6	ಶ	0.9	0.9	9	25		0.0	0.0	0				unidentified
	Ξ	=	6.4	6,0		6	-	٥,٠	0.0	6.				
5/08/82	∢ '	4	0.9	0.9		52		0.0	0.0	0.1				
. 18 t II.	•	4	9	9		• ;			. (. ,				
	•	116	6.3	6,0		3 22	·	0.0	0.0	7.7	٠, ١			

Table 32. (cont'd)

Star Fish length X with Cope- Bose- Fish length X with Cope- X with C										Food	type				
State Fish length x with Gope- Bos- Alon- Daph- Chy- 110 6 5.9 5.5 6.0 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>3</th> <th>Sepoda</th> <th></th> <th>1</th> <th>adocer</th> <th></th> <th></th> <th></th>								3	Sepoda		1	adocer			
tion n Hean Hin Hax food podite Adult mina ella nia dorus 10 6 5.9 5.5 6.0 6.0 6.0 6.0 0.0 0.0 1.3 11 2 6.0 6.0 6.5 86 0.0 0.0 0.0 2.6 12 13 6.1 6.0 6.5 86 0.0 0.0 0.0 2.7 13 6.1 6.0 6.5 86 0.0 0.0 0.0 1.0 14 5.9 5.5 6.0 70 0.0 0.0 1.0 15 10 5.9 5.5 6.0 70 0.0 0.0 1.0 16 5.0 7.0 100 0.0 0.0 1.0 17 6.1 6.2 6.2 7.0 100 0.0 0.0 1.0 18 1 6.2 6.0 6.5 7.0 100 0.0 0.0 1.0 19 1 6.0 6.5 7.0 100 0.0 0.0 1.0 10 12 20 6.0 6.5 7.0 100 0.0 0.0 1.0 11 3 6.2 6.0 6.5 7.0 0.0 0.0 1.0 12 20 6.0 6.5 7.0 0.0 0.0 1.0 13 5.8 5.5 6.0 0 14 5.5 5.5 5.5 6.0 0 15 6.0 6.5 6.0 0 16 6.0 6.5 6.0 0 17 6.0 6.0 6.0 0 18 6.0 6.0 0.0 0.0 0.0 0.0 19 7 6.0 6.0 0.0 0.0 0.0 0.0 10 8 6.0 6.0 0.0 0.0 0.0 0.0 11 9 2 6.5 6.0 0 12 10 6.0 6.0 0.0 0.0 0.0 0.0 13 1 6.0 6.0 0.0 0.0 0.0 0.0 14 5.9 5.5 6.0 0 15 6.0 6.0 6.0 0.0 0.0 0.0 0.0 16 6 6 6.0 6.0 0.0 0.0 0.0 0.0 17 6.0 6.0 0.0 0.0 0.0 0.0 0.0 18 1 6.0 6.0 0.0 0.0 0.0 0.0 0.0 19 1 6.0 6.0 0.0 0.0 0.0 0.0 10 10 10 0.0 0.0 0.0 0.0 10 10 10 0.0 0.0 0.0 10 10 10 0.0 0.0 0.0 10 10 10 0.0 0.0 0.0 10 10 0.0 0.0 0.0 10 10 0.0 0.0 0.0 10 10 0.0 0.0 0.0 10 10 0.0 0.0 0.0 10 10 0.0 0.0 0.0 10 10 0.0 0.0 0.0 10 10 0.0 0.0 0.0 10 10 0.0 0.0 0.0 10 10 0.0 0.0 0.0 10 10 0.0 0.0 0.0 10 10 0.0 0.0 0.0 10 10 0.0 0.0 0.0 10 10 0.0 0.0 0.0 10 10 0.0 0.0 0.0 10 10 0.0 0.0 0.0 10 10 0.0 0.0 10 10 0.0 0.0 10 10 0.0 0.0 10 10 0.0 0.0 10 10 0.0 0.0 10 10 0.0 0.0 10 10 0.0 0.0 10 0.0 0.0 0.0 10	:	St &-		Fish	leng	ı.	* with	e Co De			F		Daph-	Chy-	
10 6 5.9 5.5 6.0 50 0.0 0.0 0.1 1.3 12 13 6.1 6.0 6.5 86 0.0 0.0 0.0 2.5 15 13 6.1 6.0 6.5 86 0.0 0.0 0.0 0.0 15 10 5.9 5.5 6.0 90 0.0 0.0 0.0 16 17 5.9 5.5 6.0 90 0.0 0.0 0.0 17 10 5.9 5.5 6.0 90 0.0 0.0 0.0 18 15 6.7 6.5 7.0 100 0.0 0.0 0.0 19 1 6.0 7.0 100 0.0 0.0 0.0 10 10 1.0 0.0 0.0 0.0 11 10 1.0 1.0 0.0 0.0 0.0 12 12 13 14 14 14 14 13 14 14 14 14 14 14 15 15 14 14 15 15 15 14 14 15 15 15 14 14 15 15 15 14 14 15 15 15 14 14 15 15 15 14 15 15 15 14 15 15 15 14 15 15 15 14 15 15 15 14 15 15 15 15 15 15 15 15	Date	tion		Hean	H.	Max	f ood	podi					n i a	dorus	Other
12 2 6.0 6		Q	9	5.9	5.5	0.9	90	0.0		1.3					0,3 rotifer
12		=	~	9	9	0.9	20	0.0			-				
5		2	13	6.1	6.0	6.5	82	0.0							
5 10 5.9 5.5 6.0 90 0.0 0.0 2.7 1 10 5.9 5.5 6.0 70 0.0 0.0 1.8 11 5 6.7 6.5 7.0 100 0.0 0.0 1.8 12 1 5.0 * * 100 0.0 0.0 1.0 13 5 6.7 6.1 6.0 7.0 100 0.0 0.0 1.0 14 6.1 6.1 6.0 7.0 100 0.0 0.0 1.0 15 1 6.0 * * 100 0.0 0.0 1.0 16 5 7 6.0 6.5 70 100 0.0 0.0 1.0 17 2 6.0 6.5 70 100 0.0 0.0 1.0 18 1 7.0 * * 100 0.0 0.0 1.0 19 2 5.5 5.5 5.5 0 10 2 6.0 6.5 6.0 6.5 100 0.0 0.0 1.0 11 3 6.2 6.0 6.5 100 0.0 0.0 1.0 12 2 5.5 5.5 6.0 0 13 6.0 * 100 0.0 0.0 1.0 14 6.0 * 100 0.0 0.0 0.0 1.0 15 1 6.0 * 100 0.0 0.0 0.0 16 1 6.0 * 100 0.0 0.0 0.0 17 2 6.0 6.5 6.0 0 18 1 6.0 * 100 0.0 0.0 0.0 19 2 5.5 5.5 6.0 0 19 2 5.5 5.5 6.0 0 19 2 6.0 6.0 6.0 0.0 0.0 0.0 19 1 6.0 * 100 0.0 0.0 0.0 19 1 6.0 * 100 0.0 0.0 0.0 19 1 6.0 * 100 0.0 0.0 0.0 19 1 6.0 * 100 0.0 0.0 0.0 19 1 6.0 * 100 0.0 0.0 0.0 19 1 6.0 * 100 0.0 0.0 0.0 19 1 7.0 * 100 0.0 0.0 0.0 19 1 7.0 * 100 0.0 0.0 0.0 19 1 7.0 * 100 0.0 0.0 0.0 19 1 7.0 * 100 0.0 0.0 0.0 19 1 7.0 * 100 0.0 0.0 0.0 19 1 7.0 * 100 0.0 0.0 0.0 19 1 7.0 * 100 0.0 0.0 0.0 19 1 7.0 * 100 0.0 0.0 0.0 19 1 7.0 * 100 0.0 0.0 0.0 19 1 7.0 * 100 0.0 0.0 19 1 7.0 * 100 0.0 0.0 19 1 7.0 * 100 0.0 0.0 19 1 7.0 * 100 0.0 0.0 19 1 7.0 * 100 0.0 0.0 19 1 7.0 * 100 0.0 0.0 19 1 7.0 * 100 0.0 0.0 19 1 7.0 * 100 0.0 0.0 19 1 7.0 * 100 0.0 0.0 19 1 7.0 * 100 0.0 19 1		12	-	•	*	#	901	0.0							
7 10 5.9 5.5 6.0 70 0.0 0.0 1.8 11 5 6.7 6.5 7.0 100 0.0 0.0 1.0 112 1 5.0 * 7 0 100 0.0 0.0 1.0 113 1 6.0 * 7 0 100 0.0 0.0 0.0 3.8 11 6.0 * 7 0 100 0.0 0.0 0.0 3.8 11 6.0 * 7 0 100 0.0 0.0 0.0 5.6 11 6.1 6.0 6.5 70 100 0.0 0.0 1.0 12 20 6.0 6.5 70 100 0.0 0.0 1.0 13 6.2 6.0 6.5 70 0.0 0.0 1.0 14 6.1 6.2 6.0 6.5 100 0.0 0.0 1.5 15 11 6.1 6.2 6.2 6.0 0.0 0.0 1.0 15 12 5.5 5.5 6.0 0 16 10 0.0 0.0 0.0 1.0 17 1 6.0 6.5 6.0 0 18 5.7 5.5 6.0 0 18 5.7 5.5 6.0 0 19 5.8 5.5 6.0 0 19 5.8 5.5 6.0 0 10 6.0 6.0 6.0 0.0 0.0 0.0 10 6.0 6.0 6.0 0.0 0.0 0.0 10 7 6.0 6.5 6.0 0 10 7 7 8 6.0 6.0 0 10 8 6.0 6.0 6.0 0 10 9.0 0.0 0.0 0.0 10 9.0 0.0 0.0 0.0 0.0 10 9.0 0.0 0.0 0.0 0.0 10 9.0 0.0 0.0 0.0 0.0 0.0 10 9.0 0.0 0.0 0.0 0.0 0.0 10 9.0 0.0 0.0 0.0 0.0 0.0 0.0 10 9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10 9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	5/22/85	S	2	5.9	5.5	0.9	9	0.0							
1		~	2	5.9	5.5	0.9	2	0.0							
11		&	-	6.0	•	 #	00 1	0			-				
12 1 5.0 * * * 100 0.0 0.0 3.0 5 7 6.1 6.0 7.0 86 0.0 0.0 2.8 7 1 6.5 * * 0 0 0.0 0.0 0.0 5.6 7 1 6.5 * 0 0 0.0 0.0 0.0 0.0 5.6 11 6.0 * * 100 0.0 0.0 0.0 1.0 12 20 6.0 6.5 70 00 0.0 1.0 13 6.2 6.0 6.5 70 0.0 0.0 1.2 14 13 6.2 6.0 6.5 100 0.0 0.0 1.3 15 16 6.5 8.5 100 0.0 0.0 1.0 15 1 6.0 * 0 0.0 0.0 0.0 1.0 16 2 5.5 5.5 5.5 0 17 0 0 0 0 0 0.0 0.0 1.0 18 7 6.0 8.5 6.0 0 19 2 5.5 6.0 0 10 0.0 0.0 0.0 0.0 11 5.5 8.5 6.0 0 12 8 7 5.5 6.0 0 13 9 7 5.5 6.0 0 14 5.5 8.5 6.0 0 15 9 5.5 6.0 0 16 9 5.5 8.5 6.0 0 17 9 7 9 8.5 6.0 0 18 1 5.5 8.5 6.0 0 19 1 5.5 8.5 6.0 0 19 1 5.5 8.5 6.0 0 10 0.0 0.0 0.0 0.0 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•	=	s	6.7	6.5	.0°	100	0.0							
5 7 6.1 6.0 7.0 86 0.0 0.0 2.8 7 6.1 6.0 7.0 86 0.0 0.0 5.6 7 1 6.5 7.0 100 0.0 0.0 5.6 8 1 6.0 7.0 100 0.0 0.0 1.0 11 2 0 6.0 6.5 10 0.0 0.0 1.2 8 1 7.0 7 10 0.0 0.0 1.0 11 3 6.2 6.0 6.5 73 0.0 0.0 1.0 11 3 6.2 6.0 6.5 100 0.0 0.0 1.0 12 2 5.5 5.5 6.0 0 13 6.0 7 1 6.0 7 10 0.0 0.0 1.0 14 6.0 7 1 6.0 7 10 0.0 0.0 0.0 1.0 15 1 6.0 7 10 0.0 0.0 0.0 1.0 16 8 5.7 5.5 6.0 0 17 1 6.0 7 10 0.0 0.0 0.0 1.0 18 1 6.0 7 10 0.0 0.0 0.0 0.0 19 1 6.0 7 10 0.0 0.0 0.0 0.0 19 1 5.5 6.0 0 19 10 0.0 0.0 0.0 0.0 19 1 5.5 6.0 0 19 10 0.0 0.0 0.0 0.0		21		5.0	#	*	001	0.0							
6 11 6.3 6.0 7.0 100 0.0 0.0 5.6 1 1 6.0 * * 100 0.0 0.0 1.0 11 1 6.0 * * 100 0.0 0.0 1.0 12 20 6.0 6.5 80 0.8 0.0 1.2 7 2 6.2 6.0 6.5 70 0.0 0.0 1.2 1 3 6.2 6.0 6.5 100 0.0 0.0 1.5 8 1 7.0 * * 100 0.0 0.0 1.5 9 2 5.5 5.5 6.0 0 12 2 5.5 5.5 6.0 0 13 2 6.0 6.5 6.0 0 14 5.5 6.0 0 15 6.0 6.0 6.0 0 16 7 6.0 6.5 6.0 0 17 8 7 6.0 6.5 6.0 0 18 9 7 6.0 6.5 6.0 0 19 1 6.0 * 100 0.0 0.0 0.0 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5/24/85	S	^	6.1	6.0	7.0	98	0.0							
7 1 6.5 * * 1 0 0 0.0 1.0 11 1 6.0 * * 100 0.0 0.0 1.0 12 20 6.0 6.0 6.5 80 0.8 0.0 1.2 7 2 6.0 6.5 73 0.2 0.0 0.9 11 3 6.2 6.0 6.5 70 0.0 0.0 1.5 5 11 6.0 * * 100 0.0 0.0 1.5 6 3 5.8 5.5 6.0 0 7 1 6.0 * * * 0 8 2 5.5 5.5 5.0 0 8 3 6.0 0.0 0.0 0.0 0.0 1.0 9 2 5.5 5.5 5.5 0 10 2 6.0 6.0 0 10 3 6.0 6.0 0 11 5.5 * * 0 12 2 5.5 5.5 6.0 0 13 1 6.0 * * 0 14 5.5 6.0 0 15 6 6 6.0 0 16 7 6.0 6.0 0 17 1 6.0 * * 0 18 7 6.0 6.0 0 18 8 7 6.0 6.0 0 19 8 8 8 8 8 8 9 9 10 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		•	=	6.3	6.0	7.0	100	0.0							
9 1 6.0 * * 100 0.0 0.0 1.0 12 20 6.0 6.5 80 0.0 1.2 7 2 6.2 6.0 6.5 10 0.0 0.0 1.2 8 1 7.0 * * 100 0.0 0.0 1.2 11 3 6.2 6.0 6.5 100 0.0 0.0 1.0 13 6.5 6.0 0 0 0 0.0 0.0 1.0 7 1 6.0 * * 0 0 9 2 5.5 5.5 5.5 0 12 2 5.5 5.5 5.5 0 13 5.6 6.0 0 14 5.5 6.0 0 15 6.0 6.0 6.0 0 16 7 10 0.0 0.0 0.0 17 10 0.0 0.0 0.0 18 1 5.5 6.0 0 19 1 5.5 6.0 0 10 0.0 0.0 0.0 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		~	-	6.5	*	*	0								
11 1 6.0 * * 100 0.0 0.0 1.0 12 20 6.0 6.5 80 0.8 0.0 1.2 7 2 6.2 6.0 6.5 73 0.2 0.0 1.5 8 1 7.0 * * 100 0.0 0.0 1.5 11 3 6.2 6.0 6.5 100 0.0 0.0 1.5 11 5.8 5.5 6.0 0 9 2 5.5 5.5 5.5 0 9 2 5.5 5.5 5.0 0 12 2 5.5 5.5 5.0 0 13 1 6.0 * * 0 14 5.5 * * 0 15 6.0 6.0 0 15 7 1 6.0 * 0 16 8 5.7 5.5 6.0 0 17 8 5.5 6.5 0 18 9 7 5.5 6.0 0 18 9 7 5.5 6.0 0 19 1 5.5 * 0 10 0.0 0.0 0.0 0.0 19 1 5.5 * 0 10 0.0 0.0 0.0 0.0 19 1 5.5 * 0 10 0.0 0.0 0.0 0.0 19 1 5.5 * 0 10 0.0 0.0 0.0 0.0 19 1 5.5 * 0 10 0.0 0.0 0.0 0.0 19 10 0.0 0.0 0.0 0.0		6	_	9.0	*	-	100	0.0							1.0 ostracod
12 20 6.0 6.0 6.5 80 0.8 0.0 1.2 0.1 5 11 6.1 6.0 6.5 73 0.2 0.0 0.9 1 7 2 6.2 6.0 6.5 50 0.0 0.0 1.5 1 1 7.0		=	~	9.0	•		001	0.0							
5 11 6.1 6.0 6.5 73 0.2 0.0 0.9 7 2 6.2 6.0 6.5 50 0.0 1.5 8 1 7.0 7 100 0.0 1.0 1.0 5 1 6.5 7 0.0 0.0 0.0 3.0 7 1 6.0 7 0.0 0.0 0.0 3.0 9 2 5.5 5.5 6.0 0 12 2 5.5 5.5 0 6 8 5.7 5.5 6.0 0 8 7 6.0 6.0 0 5 1 5.5 6.0 0 6 8 5.7 5.5 6.0 0 7 1 1 5.5 7 0 8 7 6.0 6.0 0 8 8 7 6.0 6.0 0 9 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9		21	20	9.0	0.9		80	0.8					0.1		0.9 copepod eggs
7 2 6.2 6.0 6.5 50 6.0 0.0 1.5 1 1 7.0	5/26/85	s	Ξ	6.1	9.0		73	0.2							0.7 copepod eggs
1 7.0		7	~	6.2	9.0		05	0.0							
11 3 6.2 6.0 6.5 100 0.0 0.0 3.0 5.8 5.6 6.0 6.5 6.0 0.0 0.0 0.0 3.0 7.8 5.8 5.0 0 0.0 0.0 0.0 3.0 7.8 5.8 5.5 6.0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		83	-	7.0	*		100	0.0							
5 1 6.5 * *, 0 6 3 5.8 5.5 6.0 0 7 1 6.0 * 0 12 2 5.5 5.5 5.5 0 6 8 5.5 5.5 0 6 8 7 6.0 5.5 6.0 0 8 7 6.0 5.5 6.5 43 0.0 0.0 0.7 10 2 6.0 6.0 0 5 1 5.5 * 0 6 4 5.5 6.0 0 1 5.5 *		=	m	6.2	0.9	6.5	90 1	0.0							
6 3 5.8 5.5 6.0 0 7 11 6.0 4 4 0 9 2 5.5 5.5 5.5 0 112 2 5.5 5.5 6.0 0 6 8 5.7 5.5 6.0 0 8 7 6.0 6.0 6.0 0 5 1 5.5 4 0.0 0.0 0.7 10 2 6.0 6.0 0 6 4 5.9 5.5 6.0 0 13 1 6.0 4 0	5/29/85	S	-	6.5	*	*	0								
7 1 6.0 * * * 0 9 2 5.5 5.5 5.6 0 12 2 5.5 5.5 5.6 0 6 8 5.7 5.5 6.0 0 8 7 6.0 6.0 6.0 0 10 2 6.0 6.0 0 6 4 5.9 5.5 6.0 0 6 4 5.9 5.5 6.0 0 13 1 6.0 * * 0		Q	m	5.8	5,5	0.9			٠						
9 2 5.5 5.5 0 12 2 5.5 5.5 0 5 1 6.0 2 0 8 7 6.0 6.0 0 10 2 6.0 6.0 0 5 1 5.5 4 0 6 4 5.9 5.5 6.0 0 6 4 5.9 5.5 6.0 0 9 1 5.5 4 0 13 1 6.0 4 0		~	-	9.0	4	#	0								
12 2 5.5 5.5 0 5 1 6.0 * * 0 6 8 5.7 6.0 0 8 7 6.0 5.5 6.5 43 0.0 0.0 0.7 10 2 6.0 6.0 0 5 1 5.5 * 0 6 4 5.9 5.5 6.0 0 9 1 5.5 * * 0 13 1 6.0 * * 0		6	7	5.5	5.5	5.	0	٠.							
5 1 6.0 * * 0 6 8 8.7 5.5 6.0 0 0 0.0 0.0 0.7 8 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1		15	2	5.5	5.5	5.5	0								
6 8 5.7 5.5 6.0 0 0.0 0.0 0.7 10 2 6.5 6.5 43 0.0 0.0 0.7 10 2 6.0 6.0 0 0 0.0 0.0 0.7 1 5.5 * 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 13 1 6.0 * 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	6/02/85	'n	-	9.0	*	•	0								
8 7 6.0 5.5 6.5 43 0.0 0.0 0.7 10 2 6.0 6.0 6.0 0 5 1 5.5 * 0 6 4 5.9 5.5 6.0 0 9 1 5.5 * 100 0.0 0.0 2.0 13 1 6.0 * 0		9	90	5.7	5.5	0.9	0		*						
10 2 6.0 6.0 0 5 1 5.5 4 0 6 4 5.9 5.5 6.0 0 9 1 5.5 4 100 0.0 0.0 13 1 6.0 4 0		æ	7	9.0	5.5	9.5	43	0.0							0,3 insect
5 1 5.5 * 0 6 4 5.9 5.5 6.0 0 9 1 5.8 * 100 0.0 0.0 13 1 6.0 * * 0		2	۲,	6.0	0.9	0.9	0								
6 4 5.9 5.5 6.0 0 9 1 5.5 * * 100 0.0 0.0 13 1 6.0 * * 0	6/06/85	Ś	-	5.5	*	*	0								
1 5.5 * * 100 0.0 0.0 1.0 1 6.0 * * 0		ص	4	5.9	5.5	9.0	0								
1 6.0 * * 0		6	-	5,5	#	*	001	0.0							
		13		9.0	#	*	0								

Table 33. (cont'd)

5ta- fish length x with Cope- bose tion n Hean Hin Max food podite Adult min 5/10/8/8 5 10 6.2 6.0 6.5 50 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.						Food	tvoe			
5 10 6.2 6.0 6.5 60 0.0 1 1 7.0 * * * 100 0.0 1 1 7.0 * * * 100 0.0 1 1 7.0 * * * 100 0.0 2 3 3 7.0 6.5 6.0 6.5 6.0 3 3 6.2 6.0 6.5 6.0 100 0.0 5 6 6.4 6.0 7.0 100 12.0 5 7 5 6 6 6.1 6.0 6.5 100 12.0 6 8 6.2 6.0 6.5 6.5 112 0.0 7 8 6 6.2 6.0 6.5 112 0.0 8 7 8 6.2 6.0 6.0 100 0.0 8 8 6 6 7 6 6 7 0 100 0.0 8 8 7 8 6 7 6 7 0 100 0.0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	د ا	=1	X with food	Cope- podite	poda Adult	11	Cladocera Alon- Dap ella nia	era Daph- nia	Chy- dorus	Other
5 10 6.2 6.0 6.5 60 0.0 1 1.7.0						- 1				
6 2 6.2 6.0 6.5 50 0.0 1 11.0	6.2		09	0.0		2.5				
7 1 1.7.0 * * * 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	6.2		20	0.0		6.0				
8 1 11.0	7.0		100	0.0		1.0				
9 4 6.1 6.0 6.5 0.0 2 3 3 6.2 6.0 6.5 0.0 3 9 6.4 6.0 7.0 10.0 2 1 7.5 * * * * 0.0 3 1 7.0 * * 0.0 4 8 6.1 6.0 7.0 30 10 12.0 10 12		*	100	0.1		0.0				
111 5 4.9 5.6 0 100 0.8 4.9 5.6 0.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	6.1	-	25	0.0		0.0				1.0 ostracod
14 1 7.5	9		101	8		4				detritus
2 3 6.2 6.0 6.5 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0			2	12.0		0.0				
3	1 7.0	#	•	:		;				
20 6.4 6.0 7.0 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	6.3		· c							
5 20 6.4 6.0 7.0 30 6.0 6.1 6.0 6.5 33 0.0 6.0 6.1 6.0 6.5 33 0.0 6.0 6.2 6.0 6.5 33 0.0 6.0 6.2 6.0 6.2 6.0 6.2 6.0 6.2 6.0 6.2 6.0 6.2 6.0 6.2 6.0 6.2 6.0 6.2 6.0 6.2 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0			2	0		٠,				
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			7.0	9 6		? ·				
7 16 5.7 5.5 6.5 31 9 16 5.7 5.6 6.9 31 12 6 6.2 5.0 5.0 75 0.0 13 1 6.0 * * * * 0 14 1 6.0 * * * 0 18 5.8 5.5 6.5 31 19 2 6.5 6.0 7.0 10 19 2 6.5 6.0 7.0 5.0 5.0 10 33 2.0 5.0 5.0 5.0 11 3 6.0 5.0 6.0 0 12 6.0 6.0 6.0 0 13 12 6.0 6.0 6.0 6.0 6.0 14 8 6 6.2 6.0 6.0 6.0 83 15 6.0 6.0 6.5 61 16 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.			5	2						
10			?	0.0	:	o: (
10			5	٠. د		7.7				
9 16 5.9 5.0 6.0 75 0.0 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ç. '		001	٠.		0.0				
12 6 6.2 6.0 6.5 83 1.8 4 1 6.0 4 4 4 1 6.0 4 4 4 1 6.0 4 4 4 1 6.0 5 1 1 1 1 1 2 6.2 6.1 6.5 1 1 2 0.0 6.1 1 1 1 1 2 6.2 6.0 7.0 6.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5.9		75	0.0		5.5				
3 1 6.0 * * * 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	6.2		83			9.0		0.2		-
4 1 6.0 4 4 4 1 6.0 5		.	0							
5 20 6.1 6.0 7.0 10 0.0 8 2 6.5 6.5 7.0 5.0 11 3 5.7 5.0 6.0 33 2.0 7 8 5.8 5.5 6.5 10 0.0 7 8 5.8 5.5 6.5 0.0 13 1 6.0 6.0 6.0 10 14 2 6.0 6.0 6.0 10 7 8 6.1 6.0 6.0 6.0 10 8 6 6.2 6.0 7.0 6.0 8 8 6 6.2 6.0 7.0 83 0.4 13 12 5.8 5.0 6.0 6.0 10 14 8 6 6.2 6.0 7.0 83 0.4 15 6.0 6.0 6.5 15 16 6.0 6.0 6.5 15 17 6.0 6.0 6.5 15 18 7 6.0 6.0 6.0 10 18 8 6 6.0 6.0 6.5 15 19 8 6 6 7 6 7 0.0 10 8 7 7 7 7 0.0 10 8 7 7 7 7 0.0 10 8 8 7 7 7 7 0.0 10 8 8 8 8 8 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7	9.0		0							
7	6.1		9	0.0		0:				
8 2 6.5 6.0 7.0 50 2.0 5 12 6.2 5.0 6.0 33 2.0 7 8 5.8 5.5 6.5 0 9 20 6.0 5.5 6.5 15 13 1 6.0 6.0 6.0 100 14 2 6.0 6.0 6.0 100 2.0 15 17 5.8 5.0 6.0 8 0.0 16 17 5.8 5.0 6.0 8 0.0 17 8 6.0 6.0 6.5 41 1.0 18 6 6.2 6.0 7.0 83 0.4 19 2 6.0 6.0 6.5 15 0.0 11 2 6.0 6.0 6.5 15 0.0 14 8 6.1 6.0 6.5 15 0.0 15 10 6.0 6.5 15 0.0 16 6.1 6.0 6.5 10 0.0	5.8		71	0.0		0.1				
11 3 5.7 5.0 6.0 33 2.0 5 2 5.2 5.0 6.0 33 2.0 5 2 5 5 5 5 6.5 5 6.5 6.5 6.5 6.5 6.5 6.5 6	6.5		20	2.0		0.0				
5 12 6.2 6.0 7.0 0 7 8 5.8 5.5 6.5 0 9 20 6.0 5.5 6.5 0 113 1 6.0 6.0 100 2.0 14 2 6.0 6.0 6.5 41 1.0 15 17 6.0 6.0 6.5 41 1.0 16 18 6.1 6.0 6.5 15 0.0 17 6.0 6.0 6.5 41 1.0 18 6 6.2 6.0 6.5 6.5 6.5 19 20 6.0 6.0 6.5 15 0.0 19 2 6.0 6.0 6.5 15 0.0 18 8 6.1 6.0 6.5 15 0.0 18 8 6.1 6.0 6.5 0.0 19 9 6.1 6.0 6.5 0.0 10 0.0 0.0	5.7		33	2.0		0.0				
22 5.9 5.0 6.0 0 7 8 5.8 5.5 6.5 0 13 1 6.0 * * * 0 14 2 6.0 6.0 6.0 100 2.0 15 17 6.0 6.0 6.0 8 0.0 7 8 6.1 6.0 6.5 41 1.0 8 8 6 6.2 6.0 6.5 83 0.4 9 20 6.0 6.0 6.5 15 0.0 13 12 5.8 6.0 6.0 6.0 100 0.0 14 8 6.1 6.0 6.5 15 0.0 15 10 6.0 6.0 6.0 100 0.0 16 6.1 6.0 6.5 10 0.0	6.2		0							
7 8 5.8 5.5 6.5 15 0.0 13 1 6.0 6.0 6.0 6.0 100 2.0 15 6.5 6.5 15 0.0 14 2 6.0 6.0 6.0 100 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	5.9		0							
9 20 6.0 5.5 6.5 15 0.0 113 1 6.0 6.0 100 2.0 114 2 6.0 6.0 6.5 41 1.0 7.0 115 12 6.0 6.0 6.0 100 2.0 8 0.0 100 113 12 6.0 6.0 6.5 15 0.0 113 12 6.0 6.0 6.0 6.0 6.0 113 12 6.0 6.0 6.0 6.0 115 0.0 115 12 6.0 6.0 6.0 100 0.0 115 12 6.0 6.0 6.0 100 0.0 0.0 115 12 6.0 6.0 6.0 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	5.8		0		٠.					
13 1 6.0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9.9		51	0.0		.3				•
14 2 6.0 6.0 6.0 100 2.0 6.0 12 5.8 11 1.0 1.0	9		0							
15 17 6.0 6.0 6.5 41 1.0 6.5 7 6.1 8 0.0 6.5 8 6.0 6.0 8 9.0 6.5 8 6.0 6.5 9 8 9.0 6.5 9 9.2 6.0 6.0 6.5 15 0.0 13 12 6.0 6.0 6.0 6.0 6.0 6.0 100 0.0 6.5 15 15 0.0 100 0.0 6.0 6.0 6.0 6.0 100 0.0 6.0 6.0 6.0 100 0.0 6.0 6.0 6.0 6.0 100 0.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	0.9		100	2.0	:	0.0				
6 12 5.8 5.0 6.0 8 0.0 " 7 8 6.1 6.0 6.5 0 8 6 6.2 6.0 7.0 83 0.4 13 12 5.8 5.0 6.0 6.5 15 0.0 14 2 6.0 6.0 6.0 100 0.0 15 1 6.0 * * * * * * * * * * * * * * * * * * *	9.0		4	1.0	: .	0.3				
7 8 6.1 6.0 6.5 0 8 6 6.2 6.0 7.0 83 0.4 9 20 6.0 6.5 15 0.0 13 12 5.8 5.0 6.0 67 0.3 14 2 6.0 6.0 6.0 100 0.0 15 1 6.0 * * * 100 0.0 4 8 6.1 6.0 6.5	5.8		80	0.0		1.0				
8 6 6.2 6.0 5.0 83 0.4 9 20 6.0 6.0 6.5 15 0.0 13 12 6.0 6.0 6.0 6.0 6.7 14 2 6.0 6.0 6.0 100 0.0 15 1 6.0 * * * 100 0.0 4 8 6.1 6.0 6.5	6.1		0			-				
9 20 6.0 6.0 6.5 15 0.0 13 12 5.8 5.0 6.0 6.7 0.3 14 2 6.0 6.0 100 0.0 15 1 6.0 * * * 100 0.0 4 8 6.1 6.0 6.5	6.2		83	0.4	_	2.4				
13 12 5.8 5.0 6.0 67 0.3 14 2 6.0 6.0 5.0 100 0.0 15 1 6.0 * * * 100 0.6 4 8 6.1 6.0 6.5 0	9.0		15	0.0						
14 2 6.0 6.0 100 0.0 15 1 6.0 * * 100 0.6 4 8 6.1 6.0 6.5 0	5.8		67	0.3		6.0				
15 1 6.0 * * 100 0.0 4 8 6.1 6.0 6.5 0	9.0		001	0.0		7.0				
4 8 6.1 6.0 6.5 0	0.9		100	0.0		j.6				
	6.1	•	0							
-	9		_							detritus

were the primary food items. Larvae ranging in size from 15.0-23.5 mm TL consumed larger organisms than striped bass larvae still possessing oil or yolk. Food items included both copepodid and adult copepods, <u>Daphnia</u>, chironomids, amphipods, clams, and fish including several identified as <u>Morone</u> (Table 34). No smaller cladocerans such as <u>Bosmina</u>, <u>Alonella</u>, or <u>Chydorus</u> were found in stomachs of the larger larvae.

PARASITISM OF LARVAE. Internal parasites were found in 64 (2%) of 3217 Morone larvae examined. These parasites apparently were of two types (Figure 10): (I) a tear-drop shaped organism of 0.2-0.3 mm diameter (across the short axis), which was connected to the gut by a filament; and (II) a spherical type organism of 0.5-0.8 mm diameter.

The Type I parasite, tentatively identified as a protocephalid larva (Cestoda: Proteocephalidae), was only found attached to the intestine and stomach within the gut cavity and was less abundant than the Type II parasite. The Type II parasite (unidentified) was found in three locations: 1) epithelium of the gut cavity, 2) near the anus, and 3) anterior to the heart. The primary location was within the gut cavity.

There was no evidence of a particular size of Morone larvae being more susceptible than others to parasitism. Lengths of parasitized fish ranged from 5.0 to 24.0 mm TL (x=10.7). This was not tested statistically since not all fish larvae were examined closely for parasites; only those larvae examined for gut contents were checked for parasites. In addition, the population of larvae subject to collection were the smaller larvae, which have less ability to avoid capture.

Samples from all stations, except 1-4, contained parasitized larvae. Stations 8, 11, and 13 had seven or more parasitized larvae; no other station had more than four. It may be coincidence that the three stations with the highest occurrence of parasitized fish larvae were in close proximity to each other; however, these stations also exhibited the highest densities of other fish species, thereby perhaps enhancing parasite abundance.

Figure 10. Parasites found in Morone larvae. (A) Type I parasite (protocephalid larva) in gut cavity; (B) Type II parasite (unidentified) in epithelium, as indicated by the arrow.

Table 35. Taxonomic relationship of zooplankton organism groupings (after Borror and DeLong 1964).

Order Eucopepoda Suborder Calanoida (adult calanoid copepods) Suborder Cycloboida (adult cycloboid copepods)		Class Insecta	Subclass Endoptergota	Order Coleoptera	Family Gyrinidae (whirligig bentles)	Order Diptera	, Family Cultcidae	Subfamily Culicinae (mosquitos)	Subfamily Chironominae	Chaoborus sp. (phantom midge)	Other chironomids	Family Heleidae (biting midges)	Subclass Apterygota	Order Collembola (springtails)	Order Ephameroptera	Ephemerella sp. (mayfly)	Order Odonsta (dragonflies)	Order Plecoptera (stoneflies)	Order Trichoptera (caddiśflies)	Order Neuroptera	Family Sisridae (Spongilla files)	order Hemiptera (true bugs)	Subclass Pterygota	Order Hymenoptera (wasps)	Phylum Coelenterata	Class Hydrozoa	Order Hydroida	Family Hydridae	Hydra sp. (hydrus)	Phylum Molluska	Class Bivalvia	Family Mactridae	Rangia cuneata (freshwater clam) Class Gastropoda (snails)
Phylum Nematoda (Aematode worms) Phylum Annelida Class Polychaeta (Dolychaete worms)	Class Oligochaeta	Order Plesiopora plesiothecata	Famil	Stylaria lacustris	Dero sp.	Faul	Aeolosoma leidyi	ropuda	Class Arachulda (spiders)	Class Crustacea	Subclass Halacostraea	Section 1: Superorder Pericarida	Order Amphipoda	Suborder Gamnaridea	Gammarus sp. (gammarid; amphibod)	Order Isopada (Isapads)	Superorder Eucarida	Order Decapoda	Family Poguridae (hermit crahs)	Family Palacountidae (grass sprimps)	Subclass Branchiopoda	The letter Diplostraca	Suborder Cladocera	Family Leptodoridae	Leptodora kindli	Family Beautoidae	Bosmina sp.	Fainly Duphnidae	Daphnia sp.	Other cladocerans	Subclass Ostracoda (musse) or seed shrimps)	Subclass Copepada	

Densities (number/m 3) of zooplankton collected in lower Roanoke River, delta, and western Albemarle Sound, North Carolina, in 1984. Station numbers as in Figure 1. Table 37.

				\$:	1		1 'Y		H 0 1 1	=								
1	2	9	4	5	9	-	8	6	93	=	21	12	=	53	91	a	22	Average
			•	803.7	691.7	594.1	1165.8	640.9	1190.6	557.1	829.3	412.7	355.1	0.7721	*			774.4
	493.6	447.5	352.0	334.5	245.5	9	679.1	280.1	6.797	336.7	850.9	538.4	312.7	401.5	*	*	*	476.5
	7	90	35.3	216.1	549	452.3	605	1246.9	463.4	24.2	408.2	359.7	242.4	35. 8.	*	*	*	401.2
	245.1	420.8	372.4	517.8	796.1	593.6	713.2	517.8	919,3	785.9	451.8	627.2	318.0	97172	*	•	*	67.0
	472.9	6.63	6.99	609	942.3	541.8	534.8	83	443.9	4.85	359.9	<u>S</u>	*	2 7	*	*	*	549.9
	8 649	9125	1.617	924.1	965.3	426.6	1110.6	515.9	249.5	641.2	169.4	935,8	275.2	282	*	*	#	622.1
. ~	4	303.6	451.9	456.3	487.2	536.6	7.4 9.4	4119.3	3,96.8	2013.7	802	30.7	1.784	316.9	*	-		850.5
20.3	116.7	172.5	312.5	310.7	411	396.2	1151.3	301.4	521.8	2234.8	92.0	1256.7		405.5		*	*	583.2
		*	*	824 8	24.4	744	411.9	6 506	244.7	397.3	255.9	702	623.8	425.3	*	*	*	454.2
	*	•	*	1390.8	571.5	369.7	(9)	1377.8	435.3	561.8	189.2	830.1	485.1	296.7	*	*	*	651.2
	*	×	*	767	236.6	231.0	330.2	4.066	165.0	435.3	4,661	8,168	819.0	25.2	*	*	•	 23
	*	*	*		*	*	8,43	30	347.1	757.0	462.7	499.4	407.4	397.1	774.2	140,4	381.9	473.1
	•	•	4	.*	*	.*	611.1	1107.9	200	543.6	270.2	522,3	416,9	477.7	1124.2	563.3	363.7	491.2
٠	•	*	#	·	*	#.	57.	1150,9	195.9	1631,2	385.4	655.4	425.3	353,4	821.9	83.8	364.6	565.2
	:																	
	•			-				-										

Figure 11. Relationship of sampling date to mean density (number/ m^3) of total zooplankton, cladocerans (excluding Leptodora), and copepods present in the sampling area (Stations I-18) in 1984.

Mean densities (number/m³), by station, of zooplankton collected in lower Roanoke River, delta, and western Albemarle Sound, North Carolina, in 1985. Station numbers as in Figure 1. Table 39.

: >				~	٦	V	-	-	0	2						
Organism grouping	-	2	3	4	5	9	,	8	6	01	11	12	13	14	15	91
Nonstodes	0.0	0.0	0,0	0:0	0.2	0.2	0.3	0.2	0.3	0,0	0,3	0.0	0.0	0.0	0.0	0,0
Stylaria	0.0	0.0	0.0	0.0	0.0	0,3	0.2	: 1.5	2.1	0.2	1.2	0.7	1.0	0,3	0.1	0.0
Aeolosana	6.0	9.0	6.6	8,0	=:	0.5	0.3	9,0	0.7	9.0	0.7	0.	0.5	0.0	9.0	0,0
A actinus	7 0	3 -	2 0	, c	::	30	? .	0	2 -				0.4	2 5	2 0	20.0
Lectorbus		0 0	9 0			9.0	9	0.4		9 0	. 4	? -	4.5	: Y	3 4	2.5
Bosmina	13.5	10.8	8.62	22.9	118.9	289.0	252.6	244.2	202.3	22.1	219.9	213.4	385.5	23.0	3	. 9
Daphnia	7.2	3.5	3.7	6.4	74.9	179.2	176.0	161.7	97.5	115.0	140.1	172.4	179.1	7.98	5	¥;
Other cladocerans	6.61	4.4	9.00	47.2	æ.7	152.5	98.6	303.0	145,6	135,4	145.2	104.5	113.6	59.9	3	16,8
Ostracods	15.2	17.8	6.6	12.0	9.61	46,9	8.8	221.2	95.6	21.4	131.4	24.6	36.5	9.91	83.5	6.7
Calanoid copepod	4.6	1.9	7.8	8.9	67.8	2.5	38.9	201.7	53,6	97.6	147.7	9.03	178.4	99.5	8	9.9
Cycloploid capepad	7.5		8.01 -	e :	172.0	6. 8 8. 8	243.6	1921.0	398.7	1.9.1	1046.1	25 25 25 25 25 25 25 25 25 25 25 25 25 2	793,0	177.7	4.0	97.6
narpacticola capepoa			. c	. c		2	0,0	0.0	9.0	7 C	y. 6	- c	7.00	0.07		0.0
Coleoptera larvae	0.0	0	0.0	0	0.0	0.2	7.0	0.0		0.0	0.0	0.0	0.0	. 8.	9	0.0
Coleoptera adult	0.0	0.0	0,0	0.0	0.0	0.3	0.3	0.3	6.0	4.0	0.2	0.3	0.0	0.2	0.3	0.0
Ibsquito larvae	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
thosquito adult	0.0	0.0	0.0	0.0	0.0	0	0.0	6.0	~; 0	0.0	5.0	4,0	0,0		e (0.0
Phantom midge Tarvae	0.0	0.0	0.0	6.0	16.7	æ. :	6	8	e	6.3	1.7	S: :	9.5	5.2	5. c	· •
Phantom midge pupae	ə c	3 0	0.0	<u>ئ</u>	9,0		- ;	4.5	8.7	<u>.</u>	E. 4	7.7	æ, -	ے د م	5, c	0.0
Chironomid adult	,	7.0	7.0		9.0	ř. ~	5.5		o o	: :	Ŧ. C	, e	7 6	9 0	9 4	
Biting midges	0.0	90	9.0	3 0	7.0		9 0	4	0	0.0	0.0	0	0.0	0.0	00	0.0
Springtails	0.0	0	0.0	0.0	0.0	0.2	0.2	0.1	0,2	0	9,0		0.0	0.0	0.0	0.0
Order Diptera	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7.0	0.2	0.0	0.0	0,2	0.0	0.0
Hayfly nymphs	0.0	0.0	0.0	0.0	0.0	0,3	0.1	0.0	0.2	0.0	0.2	0,0	0.2	0.0	0.0	0.0
llayfly adults	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Uragonfly larvae	3 0))	o (0.0	n (0.0	o 6		 	2.0	2 0	= °))	7 0	9.6	• •
Gragont ly nymphs	9.0	0 0	0.0	0,0	0.0	9 0	0 0	200	0.0	0 0)))	3 6))) (9.0	9,0	20
Cathis fly larvae	000	0	- -	9 0		9 0	9.0	0	9 0	2,0	0.5	0	0.0	9 0	0.2	0.0
Caddis fly adult	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0,2	0.0	0.0	0.0	0.1	0.	0.0	0.2	0.0
Spongillafly larvae	0.0	0.0	0.0	0.0	0.0	0.1	0.	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.0
Spongillafly adult	0.0	0.0	0.0	0.0	0.5	0'0	0.1	0.1	0.1	0.5	0.4	0.1	0.0	8.0	0.3	0.0
Diving wash	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.5	4.0	0.0	0.0	0.2	0.0	0.0
Urder Hamptera))) -	o •	0.0)))) (0 0	<u> </u>)))	200	200	3 5) 0 0	9 6	9.0	9.0
Bancia	, ,		• -	2 0) e	2 0	9 9	9 6	9 0	2 -	3 6		9 0	9 6	? -	200
Soli	0.0	0	0.0	0	0.0	0.0		0.0	0.0	. 6	0.0	0.0	0.0	0.0	0.0	0.0
Unidentified	2.9	0.0	.8.	9.	5.4	5.3	3.9	7.2	6.5	4.6	7.5	3.6	3.5	5.9	4.8	6.9
•																
Total density by station	9'11	B 95	104.3	266.9	623.2	1095.8	914.4	4034.6	1103.5	851.1	2262,5	914.5	1926.1	1247.4	1951.3	192.1
Average volume sampled (m3)	5,3	S, r	5.4	2,2	7.7	11.2	9.11	10.8	9,11	0.01	8,11	10.7	6,11	8.11	S.5	6.6
in pares sarbien	-	,	,	-	9	<u>.</u>	2	Σ,	₹	ક	2	5	=	g .	9	

Mean densities (number/ m^3), by date, of zooplankton collected in lower Roanoke River, delta, and western Albemarle Sound, North Carolina, in 1985. Station numbers as in Figure 1. Table 41.

Organism grouping																			
	429	2 3	430	25	জ	፠	83	510	512	514	5 915	613	023	. 225	524	979	SA	62	019 99
Nematodas	0.0	3	0.0	0.3	2.0	4.0					ŀ	ł		1		_			
Stylaria	0.3	9.0	0.0	0.3	9.0	6.0	1.2	0'0	9.6	9.0	1.7	0.0	0'0	6.0	0.4	0,3	0.0	1.2 0.0	0.0
Aeolosoma	0.0	0.5	2,0	6.0	1.2	9.0													
Arachnids	0.4	3.0	0.4		7.	0										_			
Garmarrids	2,3	J.	9:	ð. 5	۹.	7 9													
Leptodora	2.9	5.0	6.9	113.7	47.8	41.2													
Bosmina	7.98	100.8	933.6	599.4	8.83	156.1	_												
Daothnía	213.6	574.5	2197.5	457.3	180.8	7.101													
Other cladocerans	33,8	47.8	112.1	742.4	80.8	117.3				_						_			
Ostracods	62.1	128.7	101.4	357.3	ж О.	9													
Calanoid copeood	43.2	128.2	231.4	8	28.5	91.6				_						_	_		_
Cyclonloid copeod	1147.7	174.3	1566.1	671.3	555.0	606.7	_	_	_	_	,-,	•			=		_		_
Jamesticold coecod	4.44	170.8	164.3	252.5	330.6	146.8					_	_			-		_		
spoods	0.0	0.3	0.0	0.0	0.0	0.0										_			
Coleoptera larvae	38,3	9.0	9.0	0.0	0.3	.0.													
Coleoptera adult	0.0	6.0	0.3	0.0	0.5	0.2										_			
tosquito larvae	0.0	0.0	0.0	0.0	0.0	0.0										_			
Nosquitto adult	0.0	0.3	8.0	0.4	0.5	0.2													
hanton midge larvae	4.3	6.9	13.6	9.4	8.8	4.7													
Phanton midge pupae	1.6	0.9	0.0	0.5	0.1	3.1													
Chironomid Jarvae	0.8	Ξ. -:	5.5	3.6	9 .	3.1													
Chiromonical adult	0.0	0.0	0.0	0.0	0.5	0.5													
Siting midges	0.0	0.1	0.0	0.3	0.3	۲.0										_			
Saringtails	0.0	5 .5	0.8	0.0	0.0	0.0										_			
Inder Diptera	0.0	0.3	0.0	0.0	0:0	0.0										_			
Hayfly nymphs	0.0	0.0	0.0	0.0	0.0	0.0										_			
Tayfly adults	0.0	0.0	0.0	0.0	0.0	0.0										_			
Tragonfly larvae	0.0	0.0	0.0	0.0	0.0	0.0										_			
Tragonfly: nymytis	0.0	0.0	0.0	0.0	0.0	0.0										_			
Stoneffles	0.0	0.0	0.0	0.0	0.0	0.0		•								_			
addis fly larvae	0,4	0.0	1.2	0.3	0.0	4.0										_			
addis fly adult	0.0	0.0	0.3	0:0	0.3	0.2										_			
spongillafly larvae	0.0	0.0	0.0	0.0	0.0	0.4										_			
Spongillafly adult	0.0	0.0	0.0	0.0	0.0	0.8										_			
Diving wasp	0.0	0.0	0.0	0.0	0.0	0.5													
Inter Hamiptera	0,0	0.0	0.0	0,0	0.0	0.0										_			
lydra	0.0	0.0	0.0	0.0	0.5	0.0										_			
Rangia .	0.3	0.0	0.0	0.3	0.4	0.0										_			
Snaf)	0.0	0.0	0.0	0.0	0.0	0.0										_			
Inidentified	10.6	36.6																	

Total density by date 2553,8 3377,3 5056,4 3315,9 1590,9 1349,5 1070,1 565,8 470,0 339,6 746,9 823,3 1006,8 1104,9 1432,8 1530,5 999,9 595,5 295,6 465,5 Average volume sampled (m3) 17,2 10,5 10,6 12,5 8,6 9,7 9,8 10,4 9,9 10,8 9,3 11,6 9,7 10,6 10,8 9,2 9,8 9,9 10,1 10,4 (n) Stations sampled 5 10 10 10 15 15 15 15 15 15 14 10 11 11 11 11 19 11 19

not at river stations. In 1985, <u>Leptodora</u> was found as far upriver as Station 2 (Table 39), although it remained most abundant in western Albemarle Sound.

CLADOCERA. Cladocerans comprised the most abundant zooplankter group in 1984; their relative contribution (minus Leptodora) averaged 51.8% by station (Table 42) and 53.2% by date (Table 43). Cladocerans were most abundant at Stations 9 and 11, averaging $756.0/m^3$ and $531.6/m^3$, respectively (Table 36). Lowest densities occurred at Stations 1, 2, and 3 ($156.7-216.7/m^3$). Greatest mean densities of cladocerans ($615.1/m^3$) were observed on 31 May 1984, influenced to large extent by Station 9 and Station 11 (Table 44). Lowest average densities of $177.4/m^3$ occurred on 4 June. No correlations were observed (Table 5) between mean density of cladocerans and sampling date or river flow, and no multiple regression model to predict cladoceran abundance was significant at P<0.05 (Table 6).

In 1985, all cladocerans combined were the second most abundant group of zooplankton (after copepods), representing a relative contribution of 29.2% by date (Table 45) and 43.8% by station (Table 46). The category was subdivided into Bosmina, Daphnia, and other cladocerans (excluding Leptodora) in 1985 to determine abundance relationships between striped bass larvae and their primary food sources. Bosmina were the most abundant cladocerans, comprising 12.4% of the zooplankton by date (Table 45) and 19.1% by station (Table 46). Daphnia was the second most abundant, representing 7.6% of all zooplankton by date and 13.1% by station. Cladocerans were patchy in distribution. On several occasions, cladocerans exhibited high abundance within the study area, notably at Station 15 on 30 April 1985 (Table 47). The density value of 19,869/m³ reflects a high concentration of Daphnia in the area on 30 April; at Station 13, approximately 2 km away, the concentration of cladocerans was low $(450/m^3)$. Average densities of Bosmina in the study area (Stations 5-15) were significantly correlated with JULDATE, FLOWO, and phytoplankton cell density (Table 11). Stepwise regression (Table 12) selected the variables JULDATE and average water temperature (TEMP) as best predictors of Bosmina abundance $(R^2=0.595; -n=20; P<0.001)$. For Cladocera as a group, only the sampling date (JULDATE) was an important predictor of average cladoceran abundance (R^2 =0.468; n=20; P<0.001).

Relative contribution (%), by date, of organism groups in zooplankton samples collected from the lower Roanoke River, delta, and western Albemarle Sound, North Carolina, in 1984. Station numbers as in Figure 1. Table 43.

				-											
-			 		۵	<	-	w							Overall
Organism grouping	519	225	523	525	125	83	Ē	29	3	89	019	614	919	618	ALL LIMITED
Karatodes	0.0	0.0	6	o.	0.0	0.1	o.	0.1	0.0	0.	0.0	0.0	0.0	0.0	o.
Polychaete worm	0,	e :		-	0.2	-	0,5	9	0.2	9		0.	e, c	0.0	-:-
Stylaria	4.0	9.6	9.0	o 6	9.0	o 6	7. C	- -	, ,	, c	÷ °	- c	j 0	3 6	2 0
Dero.	3	⇒ ;	-: ·	 	₹.))	j c	2 -	- 4	3 6		2 0	9	9 6	• -
Acolosama	- c		-: c	- - -	7,4	3.5	2.5		0 0	3 6	3 -	9 6	9 6	9	: =
Arachnids	7.6	- - -	? -	, .	0,0	7 0	3 -	4 6	֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֡֓֓֡֓֡	; -	- c	•	9 6	r	3 -
ramerias		3 6	: 6			: 6	: 6	3 6	3 6				2 6	2	2
Paguridae	= G))))	9 6	9 0	9 0	3	3 0	90	9 6	90	9 0	200		, c
raguridae zoea	3		9.0	2 6	200	3	ģ	? -	3 2	3 -	9 0		0		2.0
Leptocora	, ,	5 5	2 5		2	. Y	2	40.5	, ,	;	5		43.4	30.4	53.2
Other Cladocerans			7. <u>~</u>	9	· ~	, v	e e	4	; =	2	8	9	5	57.7	6.5
Calanoid concord				-	; =	. 4		4	0.4	7.8	10.3	6.4	12.5	5.9	5.1
Cultural of commond	15.7	9 6	; ;	21.9	3,0	27.6	15.6	21.7	83.3	2	17.4	18.5	18.3	19.1	21.0
Harmart Loofd consort		-	, v	5.9		4.3	33	9.1	7.6	7.1	4.6	3.9	9.6	6.9	5.2
Colectora Jarvae	00	3	0	0.1	0,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	o.
Gyrinidae Jaryae	0	0	0	0.0	0	9	0.0	0.0	٥.		Q.	Q.	0.0	0,0	٥.
Gyrinidae adult	0.	0.3	Ξ	1.6	Ξ	Q	0.2	9.0	8.	0.5	0.1	0.	0.0	0.1	9.0
Hosquito larvae	o.	0.0	0.0	0.0	0.	0.0	0.	o.	0.2	0.0	0.0	o.	0.0	0.0	0.
Nosquito pupae	0.0	0.0	o .	0	o,	0.2	0.1	o.	0.7	0.0	7 .0	0.0	9	0.0	oʻ.
fosquito adult	o.	0.0	Q	0	0,0	0.0	0	0.0	0.0	0,0	0,0	0.0	ə .	<u> </u>	⇒
Phanton midge larvae	0,3	4.0		- 0	0.5	 `	 	6.0	7 .) c	ه د د د	2 0	e •		9 6
Phanton midge pupae	2,0	 	၁ - လ ၀	7.0	÷. ~	5,4		y C	,,	? ~	ν α	9 ~	200	* v	; ~
Chironomia larvae	7	35	e -	e -		e -	9 0	•	;;	:\c	900			7.0	
Bitting and a	3 6	; ;	; ;		i c	; =		0.0		0	0.0	0.1	0.2	0.1	0.1
Navily nymbs	9	-	0.0	0.0	0.	0	0	 	0.0	9	0.0	o.	0.1	o.	0.
Hayfly adults	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Order Odonata	0.1	0.0	0.0	0.0	0'0	0.0	0.0	0.0	0.0	0.0	0.0	o,	0.0	0.0	oʻ.
Dragonfly larvae	0'0	0.0	0.0		0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	o. 6	0.0	ə , (
Dragonfly nyrquits	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	₽.	0 .5	o. •	a. ;))	⊋. '
Caddis fly larvae	e,	o.	0.	o,	0.0	0.0	0.0	0.5	 	9	0.0	0.5	0.0	0.0	; •
Caddis fly adult	0.0	 	0.0	0.0	0.0	0.0	= ;	9. 6 0.))))	D 6	= 6	9 6	3 6	•
Spongillafly larvae	o,	0.0	o,	0.0	0.0	0.0	0.0	0 6	o,	0.0	0, 0 0	0 0)) (3.0	? <
Spongillafly adult	0.0	- c	0.0		2.0	0.0	0	3	7.0	3 6	3.0	90	2 0	2.5	-
Ulving wasp	- ; 6)) (- 6	3	2 0	9 6	9 6	9 0	9 0	• =	2 0	9 0			? -
Urder Hemptera	Y 0	9 0	9 6	? ?	9 4	3 6	9	9 0	3 6	9 0	3 -	9 0	0	9 0	
nydra Dami's	9 0	2	? <	3 2		5 6		200		200	5	9	0.5	0.0	0.2
Sasti	? ⊂	0.0	• -		0.0	00	0.0	9	0.3	0.0	0.0	0.0	0.0	0.0	o.
Unidentified	1.5	2.6	2.0	2.9	1.6	0.9	0.7	1.2	2.1	0.1	1.2	1.4	1:3	6.0	1.5
Tabal proposed to	81	0	פינו	0.00	o Wi	0 001	100	0.00	100 0	0 001	100.0	100.0	100.0	0.001	100.0
lotal percentage			21.500	2											

Relative contribution (%), by station, of organism groups in zooplankton samples collected from the lower Roanoke River, delta, and western Albemarle Sound, North Carolina, in 1985. Station numbers as in Figure 1. Table 45.

10	Organism grouping temtrokes Stylaria Aeolosom Arachnids									_	< −	-	ш							•	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Hanatoks Stylaria Aeolosom Aradmids	4/26	4/S3	4/33	2/5	5/4		t	l .	/5 21	14 5/	16 5/	1	1	ĺ		8/5	6/2	9/9	01/9	Overall Contribution
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stylaria Aeolosoma Arachnids	0.0	9	0.0	0	ŀ	1	1		1		1	!	}	1	1	0	0.0	0.0		c,
0.0. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Aeolosoma Arachnids	o.	o.	0.0	0												0.0	0.2	0.0	0.	0.1
0 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1	Arachnids	0.0	c.	o.	c,												0.0	0.1	0.0	0.1	0.1
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	-	o.	.	o.	œ.												0.2	9.0	0.2	4.0	0 .1
8.9 27.7 86 81 1131 11.6 8.7 12.6 819 10.5 45. 14. 5 15. 10. 10.1 11.0 11.0 11.0 11.0 11.	Serings and serings	0.1	0.1	Q.	0.3				•								o.	0.7	10.2	0.4	6.0
25.9 27.7 186 18.1 11.1 11.6 8.7 17.6 18.9 10.5 4.5 4.9 5.7 72 20.0 3.8 4.6 4.8 7.1 16. 18.5 18.1 11.1 11.6 11.7 15. 9.6 4.6 4.7 13.1 13. 12. 22.4 11.4 11.4 11.5 2.6 4.6 4.6 4.7 13. 13. 13. 13. 13. 13. 13. 13. 13. 13.	Leptodora	0.1	o.	0.1	3,4												0.2	o.	0.1	.; ;	6.0
85 84.4 43.5 13.8 11.4 17.5 9.6 4.6 4.7 3.1 9.2 11.8 27 2.7 2.0 1.8 11.5 1.7 1.2 6.9 1.13 11.2 2.2 2.2.4 11.4 8.7 25.8 6.2 6.2 4.9 11.3 4.7 7.8 11.2 4.7 2.7 1.1 1.3 1.2 2.2 2.4 11.4 8.7 25.8 6.2 6.2 4.9 11.3 4.7 7.8 11.2 4.5 2.7 1.3 1.3 10.5 2.7 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	Bosmina	36.9	27.7	18.6	18.										-		4.6	4 .8	7.3	3.6	12.4
1.3 1.2 2.2 2.4 11.4 8.7 20.8 10.8 18.2 20.6 20.6 11.6 4.4 5.5 2.7 3.2 3.4 8.0 4.7 1.9 1.9 3.2 2.0 10.8 2.1 3.8 5.8 10.8 13.2 3.6 11.2 4.2 1.1 3.8 10.3 2.7 3.8 10.8 2.1 3.8 10.8 1.2 2.0 10.8 2.1 3.8 5.8 10.8 10.2 10.2 10.3 11.3 1.2 4.2 1.1 1.8 3.1 0.3 2.7 3.8 2.7 11.8 44.6 25.0 20.2 34.9 45.0 31.2 2.4 25.8 24.4 2.6 2.7 11.8 10.3 3.8 10.3 2.7 2.7 31.9 40.2 2.7 11.8 44.6 25.0 20.2 34.9 45.0 31.2 2.4 25.8 24.4 2.6 2.3 1.1 2.3 1.1 3.9 10.3 10.3 2.7 31.8 40.2 2.7 3	Japhnia	8.5	14.4	43.5	13.8												1.5	1.7	1,2	6.9	7.6
2.4 3.2 2.0 10.8 2.1 3.8 5.8 6.2 6.2 4.9 11.3 4.7 7.8 12.4 4.2 1.7 1.8 3.1 0.5 2.7 1.8 4.6 25.0 20.2 34.9 45.0 11.0 20.8 11.0 20.8 11.0 11.0 20.8 11.0 11.0 20.8 11.0 11.0 20.8 11.0 11.0 20.8 11.0 11.0 20.8 11.0 11.0 20.8 11.0 11.0 20.8 11.0 11.0 20.8 11.0 11.0 20.8 11.0 11.0 20.8 11.0 11.0 20.8 11.0 11.0 20.8 11.0 11.0 20.8 11.0 11.0 20.8 11.0 11.0 20.8 11.0 11.0 20.8 11.0 20.0 11.0 20.0 11.0 20.0 11.0 20.0 11.0 20.0 11.0 20.0 20	Other cladocerans	1.3	1.2	2,2	2.4					•••							3.4	8.0	4.7	1.9	9 <u>.</u> 5
High 44, 8 4, 6 2, 7 1, 8 6, 8 4, 10.8 11.0 20.8 11.5 7.0 4, 4 7, 4 11.0 3.8 10.3 29, 7 28,5 28,4 4,1 4,1 4,1 4,1 4,1 4,1 4,1 4,1 4,1 4	Ostracods	2.4	3.2	2.0	10.8												1.8	3.1	0.5	2.7	4.3
44.8 44.6 25.0 20.2 34.9 45.0 31.2 32.4 25.8 33.4 36.6 43.1 51.9 45.8 41.2 55.5 50.5 34.1 29.7 31.9 45.0 31.2 27.6 20.8 10.9 10.9 10.0 10.0 10.0 10.0 10.0 10.0	Calanoid copepod	1.9	3.2	4.6	2.7					•							10.3	2,0	28.5	87. 4.	10.8
17 4.3 2.7 & 20.8 10.9 13.7 4.3 2.7 & 20.8 10.9 13.4 12.7 4.3 12.7 4.3 13.7 14.4 13.7 15.7 10.0 0.0<	Cycloploid copepod	8. H	4.6	25.0	2.8	-				•				•	٦.	_	43.1	29.7	31.9	40.2	37.9
15. 10 10 10 10 10 10 10 10 10 10 10 10 10	Harpacticoid copepod	1.7	4.3	3,2	9.									•			-: -:	19.0	2.0	9,8	13.4
115	spods i	0.0	o.	0.0	0.0												0.0	0.0	0.1	0.0	o.
3.0	Coleoptera larvae	1.5	ó	o.	0.0												0.0	0.0	0.0	0.0	0.1
9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Coleoptera adult	0.0	o.	0.	0,0												0,0	0,0	0.1	0.1	ą.
9,0	tosquito larvae	0.0	0.0	0.0	0.0												0.0	0.0	0.0	0,0	0.0
012 0.2 0.3 0.4 0.4 0.5 0.3 0.6 0.3 0.4 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.1 0.2 0.3 0.3 0.6 0.1 0.6 0.1 0.2 0.2 0.2 0.2 0.2 0.3 0.1 0.7 0.1 0.3 0.0 0.1 0.0 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.0 0.1 0.0 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.3 <td>tosquito adult</td> <td>0.0</td> <td>e.</td> <td>0</td> <td>0</td> <td></td> <td>0.0</td> <td>0.1</td> <td>0.0</td> <td>0.1</td> <td>a.</td>	tosquito adult	0.0	e.	0	0												0.0	0.1	0.0	0.1	a.
0.1 .,0 0.00 .,0 0.1 0.2 0.2 0.2 0.0 0.1 0.3 0.3 0.3 .,0 0.1 .,0 0.2 0.7 0.7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Phanton midge larvae	0.2	0.2	0.3	0,3												3.0	0.5	9.4	9.	6.0
0.0 0.4 0.1 0.1 0.1 0.2 0.1 0.4 0.2 0.3 0.2 0.1 0.2 0.5 0.5 0.5 0.2 0.4 0.7 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	hantom midge pupae	o:	c.	0.0	C.												0.2	0.7	0.0	0.5	0.2
9,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	hironomid larvae	e.	0.4		0.1												٥.2	0.4	0.7	0.1	0,3
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Chironomid adult	0.0	0.0	0.0	0.0												o.	0.2	<u>.</u>	0.3	0.1
0.0	Siting midges	0.0	o.	0.0	o.												0	0.1	0.0	0.0	o,
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	springtails	0.0	0	o,	0.0												0.0	0.0	0.0	0.0	o,
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Jroer Diptera	0.0	•	0.	0.0												0.0	0.0	0	0.0	0
0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	layfily nymphs	0.0	0.0	0.0	0.0												0.0	0.		0.0	o,
0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	layriy adults	0'0	0	0.0	0.0												0.0	0.0	0.0	0,0	0.0
0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	Jragonfly larvae	0'0	0.0	0.0	0.0												0.0	0	0.0) 	٠,
0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	Pragontly nymbhs	0,0	0.0	0.0	0.0												0.0	0.0	0.0	0,0	0.0
0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.0	tonefiles	0.0	0.0	0.0	0.0												0.0	0.0	0	0	o.
3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	addis fly larvae	o.	0.0	a.	œ.												 0	0.0	<u>.</u>	0.0	o
78	addis fly adult	0.0	0.0	o.	0.0												0.0	0.0	0.0	0.0	o.
11 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.2 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Sponyillafly laryae	0'0	0'0	0.0	0.0												0	0.0	0.0	0.0	o.
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	spongillafly adult	0.0	0.0	0.0	0.0												0	0.0	0.0	0.0	o.
100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Diving wasp	0.0	0.0	0.0	0.0												0.0	0.0	0.0	0.0	o.
0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0	Inder Hamiptera	0.0	0.0	0.0	0.0												0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	lydra	0.0	0.0	0.0	0.												0.0	0.0	0.0	0.0	oʻ (
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(angra	0,	0.0	0	0						• •						2.0	0.7	5	0	oʻ.
		c .	<u> </u>	= c	0.0												0.0	0.0	0.0	0.0	٥,

0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001

Total percentage

Densities (number/m³) of Cladocera (excluding <u>Leptodora) collected from the lower</u> Roanoke River, delta, and western Albemarle So<u>und, Nort</u>h Carolina, in 1985. Station numbers as in Figure 1. Table 47.

i																	
	-	2	3	4	5	•	1	80	6	2	=	15	13	14	51	92	- Date Average
4/26/95	-		+	#	*				325.8	542.7		2454.5		1920.3	752.1	*	1199.1
4/28/85	*	*	*	#	•	1766.8	886.3	1590.6	1926.4	126.9	0.7605	1279.0	5258.1	1756.7	403.4	¥	1723.1
4/30/85	*	*		*	*	252.7	2349.2	1209.3	410.4	3923.2	910.2	1921.3	449.9	1196.2	19869.5	*	3249.2
5/2/85	-	*	*	*	*	4338.4	1979.8	194.9	1712.6	3370.5	1.9/8	2057.7	519.2	510.5	181.4	*	1799.1
5/4/85	19.7	6.2	45.1	603.1	1415.5	844.2	27.8	1753.7	349.8	219.6	1397.4	453.9	424.4	415.5	380.4	*	570.4
5/6/85	R	0.0	88	69.2	383.9	335.0	895.6	1639.2	4.82	371.6	8	656.7	185.2	88.3	81.1	*	375.1
5/8/82	146.0	103.2	156.1	316.8	219.3	443.8	26.7	1342.9	277.6	78.2	714.8	241.7	1045.3	31.6	418.5	#	417.8
58/01/5	12.6	0.0	45.1	0.16	68.7	22.5	173.7	432.3	922.9	74.2	275.7	6.7	393.9	64.0	9,8	*	193,3
5/17/85	0.0	5.9	9	33.4	9.0	129.5	88	554.9	6.359	22.4	662.1	2.9	125.5	28.3	17.9	*	196.5
5/14/95	19.4	0.0	9	106.2	54.2	173.1	141.9	437.0	152.3	7.5	æ.,	2,0	442.2	368.1	9,16	*	136.6
5/16/85	57.3	11.11	5.5	83.0	244.4	6.65	*	9.6/2	707.2	33.7	631.3	275.0	275,0	160.1	9,701		286.1
5/18/85	*				•	135.4	153.2	733.7	314.9	×.	354.6	5. 7.	76,5	8 	 	*	150.3
2/32/82	*	*	*	•	47.9	193.7	303.5	346.5	80.2	2.2	124.5	231.3	19,6	25.0	8.03	#	25.57
5/22/85		*		*	159.2	257.1	8.03	415.3	23.5	19.5	361.5	8.3	123.8	110.0	55.5	#	170.9
5/24/85		*	*	•	764.4	835.2	1374.5	22.5	Z9:1	3	195.3	23.5	21.7	63.4	71.3	*	353.8
5/26/85			*	*	337.1	337.8	279.8	8	139.5	4.4	90.3	0.0	32.9	8.5	0.0	*	13.3 E. 8.3
5/29/85	*	•	•	•	58.3	21.4	70.2	167.2	57.6	201.7	68	35.0	*	•	*	*	8.4
6/2/85	*	•	•	•	119.4	265.3	4.03	67.1	8.03	3	77.5	73.6	30,9	0.03 0.03	40.0	*	85.9
98/9/9			*	*	57.8	22	4.6	47.5	4.6	14.6	0.2	63.7	78.3	27.1	25.7	*	39.0
6/10/85	*	*	•	*	143.3	57.5	33,3	79.7	9.011	23.4	11.9	57.5	*	*	•	27.0	69.1

. 3

Densities (number/m 3) of Copepoda collected from the lower Roanoke River, delta, and western Albemarle Sound, North Carolina, in 1984. Station numbers as in Figure 1. Table 48.

Date	Average			169.0	124.8	130,6	131.2	190.1	8,002	191.0	217.0	181.3	242.6	169.7	149.8	205.6	XX 4	ì	
	2			•	#	*	*		*	*	*	#		*	127.3	157.1	137	2.	
	=			*	*	*	*	#	*	*	*	*	*	*	33.2	42.1	-	3.5	
	91				*	*		*	*	*	*	*	*	#	30.00	7, 23,	9	20.00	
	15			600	9,5	. 4	3 :	? -	2 13	159.7	9.00	16.0	200	200	200	224 7	1	3	
	Z		-		110.1	7 .	;	· ·	75	3 5		3 8	9 8	2	1 0 0	7.617	6. /c!	145.1	
	11			Ş	2.6	6	9 6	3,5	345.0	7 91.	9 0 0 0	0.00	7.00	3	101.3	200	231.8	173.2	٠
z	71				8.5	143.0	3.5	7. °	9 9	֓֞֝֞֜֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	8	5.0	20.5	e (٠ ١	7	3.	107.1	
0	=			•	0.83	133.	5	192.2	8	9 8	3	1123.1	6.5	613.9	77	21.0	143,B	817.8	
-	2				83.0	172.2	169.3	211.9	£ :	3	3	9.9	유 (43.7	9	9.7	51.1	46.0	2
-	6				£.	105.3	523.3	127.4	B. 1	8.0	315.7	107.3	516.1	£3,4	201.7	161.1	239.7	249.6	
<	8				345.5	20.3	9.681	177.5	8	E	0.63	9;7 9;3	7.00	257.2	149.1	147.6	142.2	7 112	7115
-	-		٠.		61.7	95.8	177.6	8.942	212.6	151.4	275.9	179.9	116.9	99.3	73.5		•	•	
S	,,	,			28.5	53.4	216.3	65.4	410.3	232.9	210.8	137.0	115.0	217.8	159.2	-	*	•	•
	٠,	,			117.1	17.8	33.4	141.6	127.2	301.2	194.5	102.3	385.9	633.8	503.2	*		. 4	×
	4	•			*	5.06	9 16	1.33	112.7	97.6	149.4	116.4	*	*	*	•	•		*
	-	,				125.3	6	200	111.0	178.0	8	2		•	*	*	•		•
	,	u			*	112.1	9	7. 4	182.2	27.0.8	9	3 5	} •		*	*		•	•
	-	-						25.5						•	, #		,	#	•
					10/043	10/c/3	10/77/6	40/57/C	28/10/3	10/02/3	10/10/2	10/15/6	0/2/0	10/0/0	: H0/0/0	6/10/04	5/ 14/ O	9/91/9	6/18/34

Table 50. Chlorophyll a concentration (ug/liter) in the Roanoke River and western Albemarle Sound, Horth Carolina, in 1984. Dashes indicate no samples taken.

-	•		e		-			- ,											
ā 1.		<u>.</u>			_					Station	ion				! !	!			
Date (mm/dd/yy		·	2	т	4	CO	9	7	8	6	10	11	12	13	14	15	16	17	13
05/13/34	i	1	1			!		3.6	•	Ī	4.4	4.4	6.0	5.8		4.0	2.8		
05/22/84	7	.5 13	.7			4.0		9.6			5.5	3.6	4.4	3.2		6.4	!!!	!	!
05/23/84	ဆ	.7 5	.3 4			5.5		4.8			8.9	10.4	6.4	4.4		6.4	 	1	1 1
05/25/84	11	0.	.5		8.4	7.4		6.7	4.4		6.7	8.9	8.9	0.9		11.2	1	1	t t
05/27/84	6	.4 8	.0 2			0.9		6.2			9.6	5.2	7.2	4.0		3.4	1	† †	t t
05/29/84	α α.	.8 12	.0 11			9.9		0.9			12.0	10.0	5.6	5.8		5.6	1	1 1	1
05/31/84	13	.4 1	0.			10.4		0.9			5.7	7.3	6.9	4.6		9.5	1	1	1
06/02/34	9	.4 1	9 0.			2.7		3.3			2.8	2.9	2.0	1.5		1.0	1	1	† †
06/04/84	i	1	i !			111		1			t t	!		!!		1 1 f	1	1	1
06/08/84	i	1	1			7.6	6.5	8.5			10.5	6.7	10.0	7.1	2.0	9.4	1	1 1	† † T
06/10/34	i	1	i		1.	3.5		10.4			4.4	6.1	11.8	10.4	5.2	8.4	1	1 1	1
06/14/34	ř-	í	i			!		1			2.7	0.9	0.9	8.0	3.6	5.5	7.6	10.8	1.0
06/16/84	i	1	1			!!!	!	† !	0.9	1.2	9.8	9.1	9.1	10.0	4.8	8.0	8.0	7.1	4.0
06/13/84	i '	i	i	!!!	!!!	†	1 1	!			1	!	!	1	†	† †	† !	! ! !	1 1
Mean	ດ໌.	.3 . 7	.2 6		8.0	6.7	6.2	0.9	5.6	7.4	6.3	6.7	6.8	5.8	4.2	6.9	7.8	9.0	2.5
•	٠.				•.				.•				•						
	1			•	-				, , , , ,		-	-		!!!	: : : :	!			

Table 51. Chlorophyll a concentration (ug/liter) in the Roanoke River and western Albemarle Sound, North Carolina, in 1985. Dashes indicate no samples taken.

4,50			-						Stat	tation					
(mm/dd/yy)	* T	2	e C	4	2	9	1	8	6	9 10	П	12	13	14	15
													1	1	
04/26/85	1	1	1	! ! !,	! !	12.8	9,3	7.2	9.7	1.5		6.0			11.2
04/28/85	!!!	!!	! !	! ! !	1	9.5	11.6	14.8	14.0	16.0		9.6			4.8
04/30/85	1	!	1 1	1	f 1	გ. 8	15.6	10.0	14.4	16.8		23.2			8.8
05/02/85	1	t t			! !		10.8	8.4	12.8	19.2		17.6			5.0
05/04/85	7.6	0.8		13.6	12.8		27.6	0.9	14.0	13.2		10.4			8.8
05/06/85	5.6	9.7	6.8	11.2	11.2		19.6	14.0	26.0	30.8		22.4			3.5
05/08/85	11.6	9.5		12.0	12.3		0.9	14.4	15.6	4.9		29.2			27.2
05/10/85	1.6	2.4		4.0	4.0		4.4	3.6	10.8	6.0		9.5			7.2
05/12/85	8	7.6		3.6	5.6		8.4	16.8	11.2	9.6		19.3			8.9
05/14/85	4.4	4.8		2.8	2.8		4.3	10.4	8.0	13.2		6.8			14.4
05/16/85	13.4	21.6		21.6	15.6	16.4	18.4	48.9	23.2	31.6	35.1	33.2	16.4	11.2	32.5
05/18/85	!!!	! !	!	.t.	!		12.0	16.8	6.8	13.2		20.4			1.3
05/20/85	† †	1	-	1 1 .J.	8.0		7.2	10.8	12.4	6.8		10.8			27.6
05/22/85	1	† † †	1	1	13.0		10.4	16.0	18.4	23.6		27.2			15.2
05/24/85	!	1 1	1 1	1	6.9		10.8	10.4	13.6	9.7		4.5			1.7
05/26/35	1	1 1	1	1	3.6		12.8	14.3	13.6	21.2		12.8			4.8
05/59/85	1	1	-	1 1	6.0		4.4	15.6	6.4	10.0		13.6	!!	1 1	1
05/02/85	!	!	1	!	8.0		8.0	8.4	4.4	5.6		2.8	3.6	6.4	1
28/90/90	1	1 1	-	!	5.6		4.4	2.4	6.8	4.4		2.0	2.5	1.0	1.0
06/10/85	. I .	1 1	! -		2.1	5.6	19.6	7.6	2.4	15.2	9.5	25.6	10.0	1	1
	-	•			• •			•							
Nean	8.3	8.8	8.1	တ ထ	2:2	6.6	11.3	11.3 12.9	12.1	13.5	12.8	15.3	6.3	7.0	10.5
-	× 	÷													

Table 52 (continued)

Identification	Cell type	Cell volume (cubic microns)	Frequency of occurrence
*Navicula sp. 2 Bory	412	4691	1.14
*Navicula sp. 3 Bory	203	276	10.86
*Navicula sp. 4 Bory	201	733	5.14
*Navicula sp. 5 Bory	26	951	2.29
*Navicula sp. 6 Bory	405	1000	3.43
*Navicula sp. 7 Bory	126	995	6.86
*Navicula sp. 3 Bory	439	251	1.71
*Navicula sp. 9 Bory	137	1047	2.86
*Navicula sp. 10 Bory	205	2111	1.14
*Navicula sp. 11 Bory	19	1016	0.57
*Navicula sp. 12 Bory	477	2513	4.00
*Navicula sp. 13 Bory	46	1129	1.71
*Navicula sp. 14 Bory	104	146	1.14
*Neidium sp. Pfitzer	452	12063	0.57
*Neidium ladogense Oestrup	441	2403	0.57
Nitzschia gracilis Hantzsch	231	4592	1.71
Nitzschia sp. 1 Hassall	182	1268	1.14
*Nitzschia sp. 2 Hassall	440	1005	2.36
*Nitzschia sp. 3 Hassall	173	879	0.57
*Nitzschia sp. 4 Hassall	469	7854	0.57
Pinnularia sp. 1 Ehrenberg	129	. 3609	1.14
*Pinnularia sp. 2 Ehrenberg	158	6283	4.00
*Pinnularia sp. 3 Ehrenberg	371	5341	4.00
Skeletonema sp. Greg	74		1.71
Stauroneis sp. Ehrenberg	147	535	0.57
*Surirella sp. 1 Turpin	174	26704	0.57
Surirella sp. 2 Turpin	199	81279	0.57
*Synedra sp. 1 Ehrenberg	317	732	3.43
*Synedra sp. 2 Ehrenberg	430	6597	0.57
*Unknown #248	248	2261	0.57
*Unknown #273	273	31356	0.57
Unknown #276	276	2827	0.57
Unknown #75	75	23703	0.50
Chlorophyceae			
*Actinastrum hantzchii	49	276	8.57
Lagerheim		\$ *** g	• •
*Closterium sp. Nitzsch	59	213	4.00
Crucigenia fenestrata Schmidle	50	101	0.57
*Crucigenia rectangularis A. Braur	1 242	390	1.71
*Crucigenia sp. 1 Morren	8	439	4.00
Crucigenia sp. 2 Morren	232	110	0.57
Netrium sp. Nageli	73	49 -	1.14
*Pediastrum duplex Meyen	1	1000	0.57
*Pediastrum sp. 1 Meyen	280	432	1.14

Table 52 (continued)

Identification	Cell type	Cell volume (cubic microns)	Frequency of occurrence
Cyanophyceae		· · · · · · · · · · · · · · · · · · ·	
Anabaena sp. Bory	434	113	2.29
*Chroococcus sp. Nageli	107	130	2.29
Dinophyceae			
*Gymnodinium danicans Campbell	296	4064	2.86
*Gymnodinium sp. 1 Stein	80	2540	5.14
Gymnodinium sp. 2 Stein	311	3941	0.57
Peridinium sp. Ehrenberg	312	6283	1.14
Unknown #323	323	260	0.57
Euglenophyceae		•	
*Euglena sp. 1 Ehrenberg	435	138	2.86
*Euglena sp. 2 Ehrenberg	231	843	12.57
Trachelomonas sp. Ehrenberg	327	524	41.71
Unknown #344	344	7634	0.57
Unknown #527	527	100	<u> </u>
Unknown			
*Unknown #108	108	3224	0.57
*Unknown #140	140	754	24 .57
*Unknown #149	149	44234	0.57
Unknown #151	151	24	0.57
*Unknown #197	197	1920	0.57
*Unknown #235	235	302	1.71
Unknown #249	249	43	0.57
Unknown #331	331	2438	0.57
*Unknown-#360-	360	524	0.57
*Unknown #363	363	13119	1.71
Unknown #369	369	9600	0.57
*Unknown #376	376	6434	2.29
Unknown #379	379	1728	0.57
Unknown #431	431	985203	1.14
Unknown #44	44	4	⁻ 0.57
*Unknown #476	476	4580	1.14
∵Unknown #482	482	34	0.57
Unknown - #486	486	1437	1.14
Unknown #460	460	2009	-0.55

Table 53. (continued)

Identification	Cell type	Cell volume (cubic microns)	
*Fragilaria sp. 1 Lyngbye	167	559	1.27
Frustulia sp. 2 Agardh	243	438	0.84
Frustulia sp. 3 Agardh	37	1016	0.84
*Gomphonema sp. 2 Agardh	453	3384	0.84
*Gyrosigma sp. 2 Hassall	373	31416	5.49
Melosira granulata Muller	508	38	98.31
Melosira sp. Agardh	454	3619	1.27
*Navicula sp. 7 Bory	126	995	3.86
*Navicula sp. 5 Bory	26	951	0.42
Navicula sp. 15 Bory	448	53097	0.42
*Navicula sp. 4 Bory	201	733	7.59
*Navicula sp. 3 Bory	203	276	0.42
*Navicula sp. 10 Bory	205	2111	2.11
Navicula sp. 16 Bory	398	565	3.38
*Navicula sp. 9 Bory	137	1047	0.42
Navicula sp. 17 Bory	250	1270	1.69
*Navicula sp. 2 Bory	412	4691	1.27
*Navicula sp. 14 Bory	104	146	6.33
*Navicula sp. 1 Bory	234	1463	6.33
*Navicula sp. 13 Bory	46	1129	4.64
Navicula sp. 18 Bory	495	735	2.11
*Navicula sp. 12 Bory	477	2513	1.69
*Navicula sp. 8 Bory	439	251	1.69
Navicula sp. 19 Bory	374	452	0.42
*Navicula sp. 6 Bory	405	1000	0.42
*Navicula sp. 11 Bory	19	1016	0.42
Navicula sp. 20 Bory	186	214	0.42
*Neidium ladogense Oestrup		2403	0.42
*Neidium sp. Pfitzer	452	12063	- 0.42
Nitzschia sp. 5 Hassall	336	1979	0.84
*Nitzschia sp. 4 Hassall	469	7354	1.27
*Nitzschia sp. 2 Hassall	440	1005	4.64
*Nitzschia sp. 3 Hassall	173	379	0.34
Nitzschia sp. 6 Hassall	308	152	0.84
*Pinnularia sp. 2 Ehrenberg	158	6233	0.42
*Pinnularia sp: 3 Ehrenberg	371	5341	1.27
Surirella sp. 3 Turpin	520	7854	-0.42
*Surirella sp. 1 Turpin	174	25704	0.42
Synedra sp. 3 Ehrenberg	509	680	58.65
*Synedra sp. 1 Ehrenberg	317	732	2.53
*Unknown #248	248	2261	0.42
*Unknown #273	273	31856	0.84
Unknown #274	274	8	3.80
Unknown #467	457	503	0.42
Unknown #513	513	7396	1.69

Table 53. (continued)

Identification	Cell type	Cell volume (cubic microns)	Frequency of occurrence
Gymnodinium sp. 3 Stein	238	503	0.42
Unknown #293	293	508	0.42
*Unknown #323	323	260	0.84
Unknown #396	396	785	0.42
Euglenophyceae			
*Euglena sp. 1 Ehrenberg	435	138	0.84
*Euglena sp. 2 Ehrenberg	231	848	2.53
*Trachelomonas sp. Ehrenberg	327	524	0.84
Unknown			_
*Unknown #108	108	3224	0.84
*Unknown #140	140	754	0.42
*Unknown #149	149	44234	0.84
Unknown #193	193	198	0.42
*Unknown #197	197	1920	1.27
Unknown #23	23 - ⁻	64	6.75
*Unknown #235	235	302	0.84
Unknown #27	27	228	0.42
Unknown #30	30	100	0.84
Unknown #313	313	100	4.64
Unknown #342	342	2771	4.22
*Unknown #360	360	524	2.11
*Unknown #363	· 363 ···	13119	1.27
Unknown #367	367	264	0.42
*Unknown #376	375	6434	2.53
Unknown #389	389	12095	0.42
Unknown #391	391	1696	0.42
Unknown #407	407	402	32.70
*Unknown #476	476	4580	0.34
Unknown #48	48	508	0.84
Unknown #502	502	1056	0.42
			· .

murale, present in 96% of the samples. Other common green algae included a species of Zygnema, Actinastrum hantzchii, and Stichococcus sp.. Synedra, Fragilaria, Cyclotella, Coscinodiscus, and Diploneis were the other genera of diatoms represented in 10% of more of the samples.

Phytoplankton cell densities ranged from 42 cells/ml to 2248 cells/ml in 1984, but there was no discernable pattern in the distribution (Table 55). Values less than 100/ml or greater than 1000/ml were not common; most densities were between 300 and 700/ml. Biomass of the phytoplankton (ug wet weight/l) was also highly variable, but showed no clear pattern (Table 56). Phytoplankton biomass for most samples fell between 300 and 800 ug/l; occasionally small or large extremes were observed. For example, values were less than 10 ug wet weight/l at Station 14 on 18 May and 31 May (Table 56). Unusually high biomass values (e.g., 18,170 and 12,900 ug wet weight/l at Station 3 on 27 May and Station 2 on 31 May, respectively) were the result of either very high densities of average-sized cells (27 May), or relatively low densities of very large phytoplankters (31 May).

In 1985, phytoplankton cell densities ranged from 24 cells/ml to 23,558 cells/ml, and there were distinct temporal and spatial patterns in the distribution (Table 57). The densities tended to be higher early in the sampling period (late April-early May) than in late May and early June. The mean density for all stations ranged from 8000-10,000 cells/l from 26 April through 4 May, but declined gradually after then to around 1000-2000 cells/l from 22 May through 10 June. Mean algal densities, averaged by station over time, were relatively low at the upper Roanoke River stations, but increased in the delta (Stations 6, 7, 9, 10, and 12) and in western Albemarle Sound at the mouth of the Roanoke River (Stations 8 and 11) and in western Albemarle Sound at the mouth of the River (Stations 8 and 11) and in western Albemarle Sound at the mouth of the Cashie River (Stations 13, 14, and 16, Table 57).

Phytoplankton biomass (ug wet weight/l) was also highly variable in 1985, but showed about the same temporal and spatial patterns as algal cell density (Table 58). Biomass varied from 2-11,605 ug wet weight/l; most values ranged between 500 and 2000 ug wet weight/l. During the sampling period, the average biomass for all stations declined from 1500-3400 ug wet weight/l early in the

Table 56. Phytoplankton wet weight biomass (ug/1) in the Roanoke River and western Albemarle Sound,

• n		.8 MEAN	339																				
3		06/1	!	1 1	1	1	1		1	750	220	183	211	324	468	377	275	91	242	124		297	
		05/23 05/25 05/27 05/29 05/31 06/02 06/04 06/08 06/10 06/14 06/16 06/18	!	1 1	1	1	† † ‡	1	1	615	105	174	471	367	297	754	88	18	21	84		275	
		06/14	1 1	1	1	1	1 1	1 1	1 1	160	251	9	101	196	259	58	296	327	399	28		197	
		07/90	1	1	1 1	† †	362	220	865	390	391	890	499	593	168	106	106	!	1	t t		417	
	`	06/08	1	1	1	1	118	318	333	184	178	155	318	447	999	275	741	1	1	t ! !		331	
DATA PAGE MARKE MARKE	-	06/04	1	! !	1	1	716	493	951	38	282	112	273	125	99	218	120	1	1	1		309	
<u> </u>	Date	06/02	27.7	15	229	100	730	173	1011	71	287	22	110	116	218	40	83	1	!	1		. 232	
(1/6n)	·	05/31	231	12900	. 157	99	117	!	! !	1	138	37	1	1	919	9	123	t !	1	!		1474	-
n	val. 2.	05/29	561	1251	289	704	867	310	475	563	450	129	270	373	70	295	122	!	1	. 1		449	
1984.		05/27	381	112	18170	വ	69	197	573	87	82	219	500	. 515	53	1 1	575	!	1			1518	
uring		05/25	343	303	201	466	364	181	182	300	95	226	631	380	838	13	857	1	! !	1		359	
lina, during		05/23	238	517	165	299	165	63	127	354	309	200	. 253	1000	54	13	235	!	†	1 1 .	•	. 286,	
		05/18 05/22		398	151	176	114	417	391	205	384	234	116	249	9/	49	233	.	† †	- 1 - 1 -		228	
		05/18	1	1	1 1		78	241	279	384	95	88	202	276	82	-	19	!				163	
able 50.	Station		1	2	က	4	ம	9		, დ	6	10	11	12	13	14	15	16	17	13		MEAN	

Table 58. Phytoplankton wet weight biomass (ug/1) in the Roanoke River and western Albemarle Sound during 1985. Dashes indicate no sample taken.

Station	-	• • .							<u> </u>	Date (mm/dd)	(pp/uu						:				
	04/26	04/28	14/26 04/28 04/30 05/02	02/05	05/04	90/50	05/04 05/06 05/08	01/50	05/12	05/14	05/10 05/12 05/14 05/16 05/18 05/20 05/22 05/24 05/26 05/29) 81/50	15/20 ()5/22 C	15/24 (12/56	15/29 0	06/02 06/06 06/10	6/06 U	ł	Mean
1	-	;			1195	1762	2220	750	1586	1267	626	:	1	;		1	:	;	;		1344
2	;	;	1	-	762	699	1799	338	1545	1641	13149	ļ	į	;	1	;	;	1	;	!	2922
	:	;	:	1	1531	1613	1351	1555	1509	682	1543	1	;	!	!	1	;	:	1	;	1400
੍ਰ ਧਾ	;	1	;	1	664	451	2152	1638	1168	785	767	1	!	;	;	1	;	;	!	:	1001
2	;	!	1	-} 	1217	1947	1273	534	932	710	1332	!	529	1026	234	142	318	1184	657	111	846
9	2666	2762	1740	1676	1540	1524	2015	519	306	585	833	3031	1204	191	922	138	300	1940	1484	625	1354
7	3486	6497	3047	1374	2206	1953	2427	267	1321	639	428	1292	1073	227	432	221	532	744	1038	230	1472
æ	873	845	1603	362	1511	1436	623	385	6450	466	553	437	1144	480	505	24	405	1092	993	285	1049
9	2064	4103	1719	3265	2312	2635	3928	843	1213	1076	1211	526	377	363	1952	150	376	533	1000	125	1514
01	1754	4705	11605	4072	1003	2295	5482	431	681	1509	3324	114	1677	815	812	137	233	455	1003	1216	2202
=	690	1204	1093	2257	463	1230	1044	865	1069	261	304	1117	345	431	372	94	421	202	637	125	711
15	1484	1973	3371	1551	3220	!	1349	,3082	366	900	933	1013	857	1163	118	93	2175	385	708	184	1244
13	604	714	\$	234	2343	476	1821	1321	439	90	586	188	34	178	202	34	407	!	422	!	57.1
14	202	1436	297	27	387	246	504	877	337	437	102	~	117	24	231	2	-	150	133	!!	367
15	2607	9810	1593	317	376	55	3403	.1493	657	191	753	~	171	257	9	72	428	!	170	1	1302
16	;		1	1	;	;	1	;	ļ.	;	:	.!	:	;	¦	1	;	;	!	537	537
Mean	1643	3405	2612	1564	1482	1220	2096	1030	1345	783	1766	844	684	523	526	107	659	744	750	382	
			*										٠								

Figure 14. Relative abundance (% of total cell density) of different algal classes in the Roanoke River and western Albemarle Sound, North Carolina, in 1984, averaged for each sampling station.

Figure 16. Relative abundance (% of total cell density) of different algal classes in the Roanoke River and western Albemarle Sound, North Carolina, in 1985, averaged for each sampling station.

Figure 17. Relative abundance (% of total wet weight) of different algal classes in the Roanoke River and western Albemarle Sound, North Carolina, in 1985, averaged for each sampling station.

In 1984, chlorophyll <u>a</u> and phytoplankton biomass were relatively low in the Roanoke study area, and also in the nearby Pamlico River Estuary, where data were collected on a bi-weekly basis throughout the year. In May and June 1984, phytoplankton cell density and biomass were only slightly higher in the upper (freshwater) portion of the Pamlico than in the Roanoke study area (Stanley and Daniel 1985). However, it is obvious from examination of the data for the Pamlico from previous years that the algal biomass there is normally much higher. It appears that unusually high river flow in early June 1984 resulted in washout of most of the Pamlico phytoplankton (Stanley and Daniel 1985). Similarly, the unusually high flow in the Roanoke River probably caused a washout of the phytoplankton in 1984. This hypothesis is supported by the fact that in 1985 both Roanoke and Pamlico phytoplankton biomass was higher, while flows were lower for the same May-June period (D.W. Stanley, unpublished data). Christian et al. (1986) found that algal density in the lower Neuse River is strongly controlled by fluctuation in river discharge.

There was no significant correlation between Roanoke chlorophyll a concentrations and phytoplankton biomass, which is not surprising for a system like the lower Roanoke River. A regression of chlorophyll against phytoplankton biomass yielded an R² value of 0.05, indicating no relationship between the two parameters. Two possible reasons for this come to mind. First, it is well known that the biomass:chlorophyll ratio varies widely (seven-fold or more) in phytoplankton, depending on the species composition and nutritional status of the cells (Valiella 1984). Second, the chlorophyll a levels measured for the Roanoke were near the lower limit of detection by the method used in our laboratory. In any case, the biomass:chlorophyll ratio for the Roanoke study area averaged 51:1, which is close to the value of 50:1 often reported as an average (e.g., Valiella 1984). Both parameters are useful: chlorophyll a for comparison to other systems because it is commonly measured in aquatic ecosystems of all types, and wet weight biomass because it is useful for addressing questions concerning trophic structure and functioning.

Most of the algae are small species that should be usable as food for grazing zooplankton in the Roanoke River. Blue-green algae, which are usually classified as undesirable food for zooplankters, were not present in significant

Figure 19. Log phytoplankton biomass vs. log zooplankton biomass for Roanoke study area samples in 1984 and 1985. Shaded area indicates range of values compiled for 13 lakes by McCauley and Kalff (1981).

by yolksac striped bass larvae. Unfortunately, no historical data base exists for Roanoke River and western Albemarle Sound zooplankton to indicate what level of food availability is necessary to produce successful striped bass year classes.

Higher than normal river flow in 1984 probably caused striped bass eggs and larvae to be washed out from the Roanoke River before feeding began. Striped bass eggs were found in the Roanoke River delta below the Highway 45 bridge (Station 12), which is approximately 125 river miles downstream from the major spawning ground. Larvae with yolk were common throughout the study site, including the Bachelor Bay stations. The few larvae in feeding condition were found exclusively in the mouth of the Cashie River (Station 11) and Batchelor Bay (Stations 13, 14, and 15) in the presence of low zooplankton densities.

Rulifson and Stanley (1985) interpreted these results to mean that the 1984 year class would not be an abundant one, at least not as abundant as the 1982 and 1983 year classes. This was confirmed by the juvenile abundance index (USDOI and USDOC 1985) conducted in Albemarle Sound that year, which was approximately 50% of the 1983 index and less than 1% of the highest index on record (26.4 fish per haul, 1959). The index value obtained by the North Carolina Division of Marine Fisheries was 0.0 striped bass young-of-the-year (YOY) per trawl; Dr. W.W. Hassler of North Carolina State University obtained a value of 0.36 (Sara Winslow, Division of Marine Fisheries, Elizabeth City, NC, personal communication). Rulifson and Stanley (1985) predicted that under lower flow conditions, zooplankton densities in the river should increase, and first feeding of striped bass larvae should be initiated in the lower river thus optimizing young striped bass survival.

This hypothesis was supported by results of the 1985 study. River flow was lower than in 1984, zooplankton densities were higher, and striped bass larvae began feeding in the Roanoke River between Plymouth and Jamesville. The juvenile abundance index for 1985 indicated better survival of striped bass than in 1984. The Division of Marine Fisheries obtained an abundance index value of 0.32 YOY striped bass per trawl, and Hassler obtained a value of 1.30 (Sara Winslow, personal communication). These values are still quite low relative to

minimum of 2% of the larvae examined had parasites (Figure 13). The effects of parasitism on striped bass larvae at this stage of development is not documented in the literature, although other investigators have cited incidences of parasitism in other ecosystems (e.g., Buckley et al. 1985).

Incidence of deformed striped bass larvae was lower in 1985 than in 1984. Results of the earlier study indicated that up to 5% of the larvae examined were deformed (Figure 20). Less than 2% of the larvae examined in 1985 were in this condition. The causative agent responsible for this condition has not been determined. One possibility may be starvation of the larvae. Certainly, the rate of development and rate at which the oil globule is used is directly correlated with prey concentration (Eldridge et al. 1981; Rogers and Westin 1981). Another possibility may be that poor water quality is placing stress on the larvae during critical larval development (Palawski et al. 1985). Since water flows were higher in 1984, corresponding with increased incidence of deformed larvae, it is possible that physio-chemical properties of the runoff (e.g., sudden changes in water temperature, pH, or pollutant substances) at sublethal levels could have contributed to the deformities.

One suspected cause of larval striped bass mortality is excessive levels of aqueous aluminum in the presence of moderately low pH. Studies designed specifically to examine water quality of striped bass spawning grounds and nursery habitats, especially in Chesapeake Bay, have failed to identify any one causative agent for declining striped bass stocks (USDOI and USDOC 1985). These studies were correlated with extensive laboratory research. The possible exception is high aluminum in moderately acidic waters. In situ experiments of exposing striped bass larvae (24 hours after hatching) to natural waters of the Nanticoke River, a primary striped bass spawning tributary in Chesapeake Bay, were conducted to determine mortality rates (Hall et al. 1985). All 68 of the organic-and inorganic contaminants monitored during the study were present in low concentrations, with the exception of aluminum (120 ug/l in filtered samples). The average Nanticoke River pH was about 6.3, not extremely acidic but potentially stressful for larval striped bass (Hall et al. 1985). Recent laboratory experiments at the Columbia National Fisheries Research Laboratory showed that 19-day old striped bass larvae exposed to pH 6.5 died in seven days;

when 100 ug/l was added, death occurred within five days. Results of our water quality study in 1985 indicated total aluminum concentrations in the Roanoke River ranged from 200-2400 ug/l (unfiltered samples) and the water was moderately acidic (pH 6.0-6.8), suggesting a potential problem for striped bass larvae in the Roanoke. A pH range of 6.0-10.0 is favorable for survival of striped bass larvae and young (Regan et al. 1968); the optimum pH is 7.5 (Davies 1970, 1973). However, an instant change (pulse) of 0.8-1.0 pH units, even within the favorable range, will cause high mortality in striped bass larvae (Doroshov 1970). Short-term fluctuations of pH in the Roanoke River and the corresponding concentrations of toxic (labile) aluminum present, have not been determined and warrant examination.

- 7). Chlorophyll <u>a</u> concentrations were mostly between 4 and 7 ug/l in 1984 with no clear spatial or temporal patterns in the data. However, 1985 levels were higher (mostly between 5 and 15 ug/l) with a spatial pattern (lowest upriver, highest downriver, intermediate in western Albemarle Sound). Chlorophyll appeared to be negatively correlated with river flow.
- 8). The phytoplankton community resembled that of a lake more closely than that of an estuarine environment. About 150 phytoplankton cell types were identified; diatoms (Bacillariophyceae) exhibited the highest diversity followed by green algae (Chlorophyceae). Only 23 of the cell types appeared in more than 10% of the samples.
- 9). Phytoplankton densities between 300 and 700 cells/ml were common in 1984. No pattern was discernable in the distribution. Phytoplankton biomass fell between 300 and 800 ug wet weight/l for most samples.
- 10). Phytoplankton cell densities were higher in 1985 with distinct temporal and spatial patterns. Densities tended to be higher (8000-10,000 cells/l) early in the study (late April-early May) than later in May and early June (1000-2000 cells/ml). Densities were relatively low upriver in the Roanoke, and increased in the lower Roanoke and in western Albemarle Sound.

Phytoplankton biomass showed the same temporal and spatial patterns as algal cell density. Most biomass values ranged between 500 and 2000 ug wet weight/l. Average biomass for the study area declined from 1500-3400 ug wet weight early in the sampling period to around 400-700 ug wet weight/l in early June.

- 11). Green algae (Chlorophyceae) were numerically dominant at all stations in 1984, comprising 47-87% of the total cell density. Chyrsophyceae and Bacillariophyceae (diatoms) were of secondary importance. Generally, bulk of the total algal biomass was made up of green algae (44%), diatoms (15%), and chrysophytes (16%).
- 12). In 1985 diatoms replaced green algae as the major class, both in terms of cell density (40-60% at most stations) and biomass (40-60%). Green algae was second, comprising 25-30% of the total cell density and 20-40% of total biomass. Chrysophytes were also less important in 1985 than in 1984.
- 13). Most algae collected from the study area were small species that are potentially usable as food for grazing zooplankton.

larvae into western Albemarle Sound in 1984. Low river flow in 1985 allowed larvae to remain within the Roanoke River and delta to feed and grow.

- 23). Striped bass eggs, representing 2.9% of the total catch in 1984, were found throughout the study area including Albemarle Sound. Mean egg abundance within the study area was negatively correlated with river flow measured at Roanoke Rapids, N.C., lagged by three days. No eggs were found in the study area in 1985.
- 24). Stage 1 larvae (with yolk) comprised 96% of the catch in 1984 and 67% in 1985. Greatest concentrations in 1984 were from Williamston to the area just above the Thoroughfare (Stations 1-4), and also in the lower delta. Highest abundance in 1985 was from Williamston into the upper Roanoke River delta (Stations 6 and 7).
- 25). Stage 2 larvae (beyond yolk stage) comprised only 1.2% of the catch in 1984 and 33% in 1985. No larvae that had absorbed the oil globule were caught in 1984. Larvae with oil were most abundant in the lower Roanoke River and delta in 1985; larger larvae (up to 24 mm TL) were found in the lower delta and western Albemarle Sound late in the sampling season.
- 26). The number of striped bass larvae in feeding condition was much greater in 1985 than 1984. Only 1% were in feeding condition in 1984; of those, 11% had food items in their guts. All feeding larvae were caught in western Albemarle Sound. In 1985, first-feeding larvae were caught as far upstream as Station 4. Approximately 48% of Stage 1 larvae and 39% of Stage 2 larvae had consumed food items.
- 27). In 1985 the number of larvae with food was correlated with sampling date, sample collection time, and density of cladocerans and copepods present. Major food items were cladocerans, primarily <u>Bosmina</u>, and copepodid stage copepods. Larger Stage 2 larvae consumed larger food items such as <u>Daphnia</u>, copepodid and adult copepods, and fish (including <u>Morone larvae</u>).
- 28). Internal parasites were found in at least 2% of all Morone larvae examined in 1985. These parasites were of two types: Type I, tentatively identified as a protocephalid larva, attached to the intestine and stomach; and Type II (unidentified) attached at three locations (gut cavity, near the anus, and anterior to the heart).

ACKNOWLEDGEMENTS

We take this opportunity to thank Tony Mullis, Pete Kornegay, and Mike Humphreys of the North Carolina Wildlife Resources Commission, Division of Boating and Inland Fisheries, for collecting samples at Stations 1-5. We also appreciate the efforts of Institute personnel for field sampling, sample processing, and data management: David Bronson, Debbie Daniel, and Scott Wood. Mr. Wade Brabble of Plymouth, North Carolina, donated use of his private dock during the field season in both years.

LITERATURE CITED

- A.P.H.A. (American Public Health Association).
 1975. Standard methods for the examination of water and wastewater.
 A.P.H.A., New York.
- Borror, D.J. and D.M. DeLong. 1964. An introduction to the study of insects, revised ed. Holt, Rinehart and Winston, New York.
- Boynton, W.R., T.T. Polgar, and H.H. Zion.
 1981. Importance of juvenile striped bass food habits in the Potomac Estuary. Trans. Amer. Fish. Soc. 110:56-63.
- Buckley, L.J., T.A. Halavik, G.C. Laurence, S.J. Hamilton, and P. Yevich.
 1985. Comparative swimming stamina, biochemical composition, backbone
 mechanical properties, and histopathology of juvenile striped bass from
 rivers and hatcheries of the eastern United States. Trans. Amer. Fish.
 Soc. 114:114-124.
- Carpenter, E.J.
 1971. Annual phytoplankton cycle of the Cape Fear River Estuary, North
 Carolina. Chesapeake Sci. 12:95-104.
- Christian, R.R., W.L. Bryant, Jr., and D.W. Stanley.

 1986. The relationship between river flow and Microcystis aeruginosa blooms in the Neuse River, North Carolina. Univ. North Carolina WRRI Rep. No. 223, Raleigh, 100 p.
- Copeland, B.J., R.G. Hodson, S.R. Riggs, and J.E. Easley, Jr.
 1983. The ecology of Albemarle Sound, North Carolina: an estuarine profile. U.S. Fish and Wildlife Service, Division of Biological Services, Washington, D.C. FWS/OBS-83/01, 66 p.
- Davies, W.D.

 1970. The effects of temperature, pH and total dissolved solids on the survival of immature striped bass, Morone saxatilis (Walbaum), Doctoral dissertation, North Carolina State University, Raleigh, NC.

- Lippson, A.J. and R.L. Moran.
 1974. Manual for identification of early developmental stages of fishes of the Potomac River estuary. Power Plant Siting Program, Maryland Dept. Nat. Resouces. 282 p.
- Mansueti, R.J. 1964. Eggs, larvae and young of the white perch, Morone americanus, with comments on its ecology in the estuary. Chesapeake Sci. 5(1-2):3-45.
- Marshall, H.G.
 1967. Plankton in James River Estuary, Virginia. I. Phytoplankton in Willoughby Bay and Hampton Roads. Chesapeake Sci. 8(2):90-101.
- McCauley, E. and J. Kalff.

 1981. Empirical relationship between phytoplankton and zooplankton biomass in lakes. Can. J. Fish. Aquat. Sci. 38:458-463.
- McCoy, E.G.
 1959. Quantitative sampling of striped bass, Roccus saxatilis (Walbaum), eggs in the Roanoke River, North Carolina. M.S. Thesis, N.C. State Univ., Raleigh, N.C., 136 p.
- Mihursky, J.A., W.R. Boynton, E.M. Setzler-Hamilton, and K.V. Wood.
 1981. Freshwater influences on striped bass population dynamics, pp.
 149-167. In Proceedings of the National Symposium on Freshwater Inflow
 to Estuaries. Vol. I. U.S. Fish and Wildlife Service. FWS/OBS-81/04.
- Palawski, D., J.B. Hunn, and F.J. Dwyer.
 1985. Sensitivity of young striped bass to organic and inorganic contaminants in fresh and saline waters. Trans. Amer. Fish. Soc. 114:748-753.
- Regan, D.M., C.L. Wellborn, and R.G. Bowker.

 1968. Striped bass development of essential requirements for production.

 Bureau Sport Fish and Wildlife, Special Report, Atlanta, GA.
- Rogers, B.A. and D.T. Westin.
 1981. Laboratory studies on effects of temperature and delayed initial feeding on development of striped bass larvae. Trans. Amer. Fish. Soc. 110:100-110.
- Rulifson, R.A.
 1984a. Food and feeding of young striped bass in western Albemarle Sound,
 North Carolina. N.C. Dept. Nat. Res. Commun. Develop., Div. Mar. Fish.,
 Compl. Rep. for Contract C-1366, 47 p.
- Rulifson, R.A.
 1984b. Investigation of possible finfish predators of striped bass
 (Morone saxatilis) in western Albemarle Sound, North Carolina. N.C.
 Dept. Nat. Res. Commun. Develop., Div. Mar. Fish., Compl. Rep. for Proj.
 AFC-18-3, Job 4, 75 p.

The appendices, a total of 447 pages, are not included, but will be made available on request.

3 6668 00003 6345